On a Class of Convolution Operators on a Finite Interval
Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 653-657.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we state criteria for the completeness of root subspaces of convolution operators on a finite interval with kernels equal to the Fourier transform of the ratio of two entire functions of exponential type from special classes. We describe a class of entire functions with a regular (in a certain sense) distribution of roots.
Keywords: convolution operator, completeness of root subspaces, entire function, function of exponential type, basis property of root vectors, Hilbert–Schmidt operator.
Mots-clés : Fourier transform
@article{MZM_2014_96_5_a1,
     author = {G. M. Gubreev and G. D. Urum},
     title = {On a {Class} of {Convolution} {Operators} on a {Finite} {Interval}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {653--657},
     publisher = {mathdoc},
     volume = {96},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a1/}
}
TY  - JOUR
AU  - G. M. Gubreev
AU  - G. D. Urum
TI  - On a Class of Convolution Operators on a Finite Interval
JO  - Matematičeskie zametki
PY  - 2014
SP  - 653
EP  - 657
VL  - 96
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a1/
LA  - ru
ID  - MZM_2014_96_5_a1
ER  - 
%0 Journal Article
%A G. M. Gubreev
%A G. D. Urum
%T On a Class of Convolution Operators on a Finite Interval
%J Matematičeskie zametki
%D 2014
%P 653-657
%V 96
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a1/
%G ru
%F MZM_2014_96_5_a1
G. M. Gubreev; G. D. Urum. On a Class of Convolution Operators on a Finite Interval. Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 653-657. http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a1/

[1] A. G. Kostyuchenko, A. A. Shkalikov, “O summiruemosti razlozhenii po sobstvennym funktsiyam differentsialnykh operatorov i operatorov svertki”, Funkts. analiz i ego pril., 12:4 (1978), 24–40 | MR | Zbl

[2] B. V. Paltsev, “Asimptoticheskoe povedenie sobstvennykh znachenii integralnykh operatorov svertki na konechnom intervale s yadrami, preobrazovaniya Fure kotorykh ratsionalny”, Dokl. AN SSSR, 194:4 (1970), 774–777 | MR | Zbl

[3] B. V. Paltsev, “Razlozhenie po sobstvennym funktsiyam integralnykh operatorov svertki na konechnom intervale s yadrami, preobrazovaniya Fure kotorykh ratsionalny. “Slabo” nesamosopryazhennye regulyarnye yadra”, Izv. AN SSSR. Ser. matem., 36:3 (1972), 591–634 | MR | Zbl

[4] Yu. I. Lyubarskii, “Ob operatore svertki na konechnom intervale”, Izv. AN SSSR. Ser. matem., 41:3 (1977), 620–651 | MR | Zbl

[5] G. M. Gubreev, “Spektralnaya teoriya regulyarnykh kvazieksponent i regulyarnykh $B$-predstavimykh vektor-funktsii (metod proektirovaniya: 20 let spustya)”, Algebra i analiz, 12:6 (2000), 1–97 | MR | Zbl

[6] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR | Zbl