Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_96_5_a1, author = {G. M. Gubreev and G. D. Urum}, title = {On a {Class} of {Convolution} {Operators} on a {Finite} {Interval}}, journal = {Matemati\v{c}eskie zametki}, pages = {653--657}, publisher = {mathdoc}, volume = {96}, number = {5}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a1/} }
G. M. Gubreev; G. D. Urum. On a Class of Convolution Operators on a Finite Interval. Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 653-657. http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a1/
[1] A. G. Kostyuchenko, A. A. Shkalikov, “O summiruemosti razlozhenii po sobstvennym funktsiyam differentsialnykh operatorov i operatorov svertki”, Funkts. analiz i ego pril., 12:4 (1978), 24–40 | MR | Zbl
[2] B. V. Paltsev, “Asimptoticheskoe povedenie sobstvennykh znachenii integralnykh operatorov svertki na konechnom intervale s yadrami, preobrazovaniya Fure kotorykh ratsionalny”, Dokl. AN SSSR, 194:4 (1970), 774–777 | MR | Zbl
[3] B. V. Paltsev, “Razlozhenie po sobstvennym funktsiyam integralnykh operatorov svertki na konechnom intervale s yadrami, preobrazovaniya Fure kotorykh ratsionalny. “Slabo” nesamosopryazhennye regulyarnye yadra”, Izv. AN SSSR. Ser. matem., 36:3 (1972), 591–634 | MR | Zbl
[4] Yu. I. Lyubarskii, “Ob operatore svertki na konechnom intervale”, Izv. AN SSSR. Ser. matem., 41:3 (1977), 620–651 | MR | Zbl
[5] G. M. Gubreev, “Spektralnaya teoriya regulyarnykh kvazieksponent i regulyarnykh $B$-predstavimykh vektor-funktsii (metod proektirovaniya: 20 let spustya)”, Algebra i analiz, 12:6 (2000), 1–97 | MR | Zbl
[6] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR | Zbl