Approximation of Subspaces of Symmetric Spaces Generated by Independent Functions
Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 643-652

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be a subspace of a symmetric space $X$ generated by $n$ independent identically distributed functions. It is proved that, under certain conditions on $X$, there exists a projection $P$, $\|P\|\le K$ ($K$ depending only on $X$) whose image contains $E$ and has dimension at most $Cn \ln(n + 1)$ ($C$ is independent of $n$ and $X$).
Keywords: uniformity function, independent functions, symmetric space, Orlicz space, Kruglov property.
@article{MZM_2014_96_5_a0,
     author = {S. V. Astashkin},
     title = {Approximation of {Subspaces} of {Symmetric} {Spaces} {Generated} by {Independent} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--652},
     publisher = {mathdoc},
     volume = {96},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a0/}
}
TY  - JOUR
AU  - S. V. Astashkin
TI  - Approximation of Subspaces of Symmetric Spaces Generated by Independent Functions
JO  - Matematičeskie zametki
PY  - 2014
SP  - 643
EP  - 652
VL  - 96
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a0/
LA  - ru
ID  - MZM_2014_96_5_a0
ER  - 
%0 Journal Article
%A S. V. Astashkin
%T Approximation of Subspaces of Symmetric Spaces Generated by Independent Functions
%J Matematičeskie zametki
%D 2014
%P 643-652
%V 96
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a0/
%G ru
%F MZM_2014_96_5_a0
S. V. Astashkin. Approximation of Subspaces of Symmetric Spaces Generated by Independent Functions. Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 643-652. http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a0/