Approximation of Subspaces of Symmetric Spaces Generated by Independent Functions
Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 643-652.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be a subspace of a symmetric space $X$ generated by $n$ independent identically distributed functions. It is proved that, under certain conditions on $X$, there exists a projection $P$, $\|P\|\le K$ ($K$ depending only on $X$) whose image contains $E$ and has dimension at most $Cn \ln(n + 1)$ ($C$ is independent of $n$ and $X$).
Keywords: uniformity function, independent functions, symmetric space, Orlicz space, Kruglov property.
@article{MZM_2014_96_5_a0,
     author = {S. V. Astashkin},
     title = {Approximation of {Subspaces} of {Symmetric} {Spaces} {Generated} by {Independent} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--652},
     publisher = {mathdoc},
     volume = {96},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a0/}
}
TY  - JOUR
AU  - S. V. Astashkin
TI  - Approximation of Subspaces of Symmetric Spaces Generated by Independent Functions
JO  - Matematičeskie zametki
PY  - 2014
SP  - 643
EP  - 652
VL  - 96
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a0/
LA  - ru
ID  - MZM_2014_96_5_a0
ER  - 
%0 Journal Article
%A S. V. Astashkin
%T Approximation of Subspaces of Symmetric Spaces Generated by Independent Functions
%J Matematičeskie zametki
%D 2014
%P 643-652
%V 96
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a0/
%G ru
%F MZM_2014_96_5_a0
S. V. Astashkin. Approximation of Subspaces of Symmetric Spaces Generated by Independent Functions. Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 643-652. http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a0/

[1] T. Figiel, W. B. Johnson, G. Schechtman, “Factorization of natural embeddings of $l_p^n$ into $L_r$. I”, Studia Math., 89:1 (1988), 79–103 | MR | Zbl

[2] A. Pełczyński, H. P. Rosenthal, “Localization techniques in $L^{p}$ spaces”, Studia Math., 52 (1975), 263–289 | MR | Zbl

[3] F. Albiac, N. J. Kalton, Topics in Banach Space Theory, Grad. Texts in Math., 233, Springer, New York, 2006 | MR

[4] W. B. Johnson, G. Schechtman, “Sums of independent random variables in rearrangement invariant function spaces”, Ann. Probab., 17:2 (1989), 789–808 | DOI | MR | Zbl

[5] S. V. Astashkin, L. Maligranda, E. M. Semenov, “Multiplicator space and complemented subspaces of rearrangement invariant space”, J. Funct. Anal., 202:1 (2003), 247–276 | DOI | MR | Zbl

[6] M. Sh. Braverman, Independent Random Variables and Rearrangement Invariant Spaces, London Math. Soc. Lecture Note Ser., 194, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[7] J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces. II. Function Spaces, Ergeb. Math. Grenzgeb., 97, Springer-Verlag, Berlin, 1979 | MR | Zbl

[8] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR | Zbl

[9] T. Andô, “On products of Orlicz spaces”, Math. Ann., 140:3 (1960), 174–186 | DOI | MR | Zbl

[10] S. V. Astashkin, “O bilineinom multiplikativnom funktsionale”, Issledovaniya po teorii funktsii mnogikh veschestvennykh peremennykh, Yaroslavskii gos. un-t, Yaroslavl, 1982, 3–15 | Zbl

[11] S. V. Astashkin, “O multiplikatore simmetrichnogo prostranstva otnositelno tenzornogo proizvedeniya”, Funkts. analiz i ego pril., 30:4 (1996), 58–60 | DOI | MR | Zbl

[12] S. V. Astashkin, “Tensor product in symmetric function spaces”, Collect. Math., 48:4-6 (1997), 375–391 | MR | Zbl

[13] M. Milman, “Tensor products of function spaces”, Bull. Amer. Math. Soc., 82 (1976), 626–628 | DOI | MR | Zbl

[14] M. Milman, “Embeddings of Lorentz–Marcinkiewicz spaces with mixed norms”, Anal. Math., 4:3 (1978), 215–223 | DOI | MR | Zbl

[15] M. Milman, “A note on $L(p,q)$ spaces and Orlicz spaces with mixed norms”, Proc. Amer. Math. Soc., 83:4 (1981), 743–746 | MR | Zbl

[16] S. V. Astashkin, “O podprostranstvakh, porozhdennykh nezavisimymi funktsiyami, v simmetrichnykh prostranstvakh so svoistvom Kruglova”, Algebra i analiz, 25:4 (2013), 1–22 | MR

[17] V. M. Kruglov, “Zamechanie k teorii bezgranichno delimykh zakonov”, TVP, 15:2 (1970), 330–336 | MR | Zbl

[18] W. B. Johnson, B. Maurey, G. Schechtman, L. Tzafriri, Symmetric Structures in Banach Spaces, Mem. Amer. Math. Soc., 19, no. 217, Amer. Math. Soc., Providence, RI, 1979 | MR | Zbl

[19] S. V. Astashkin, F. A. Sukochev, “Nezavisimye funktsii i geometriya banakhovykh prostranstv”, UMN, 65:6 (2010), 3–86 | DOI | MR | Zbl

[20] S. V. Astashkin, “Rademacher series and isomorphisms of rearrangement invariant spaces on the finite interval and on the semi-axis”, J. Funct. Anal., 260:1 (2011), 195–207 | DOI | MR | Zbl

[21] J. Lindenstrauss, H. P. Rosenthal, “The ${\mathcal L}_p$ spaces”, Israel J. Math., 7:4 (1969), 325–349 | DOI | MR | Zbl

[22] L. V. Kantorovich, G. P. Akilov, Funktsionalnyi analiz, Nauka, M., 1977 | MR | Zbl

[23] M. A. Krasnoselskii, Ya. B. Rutitskii, Vypuklye funktsii i prostranstva Orlicha, Sovremennye problemy matematiki, Fizmatgiz, M., 1958 | MR | Zbl