Approximation of Subspaces of Symmetric Spaces Generated by Independent Functions
Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 643-652
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $E$ be a subspace of a symmetric space $X$ generated by $n$ independent identically distributed functions. It is proved that, under certain conditions on $X$, there exists a projection $P$, $\|P\|\le K$ ($K$ depending only on $X$) whose image contains $E$ and has dimension at most $Cn \ln(n + 1)$ ($C$ is independent of $n$ and $X$).
Keywords:
uniformity function, independent functions, symmetric space, Orlicz space, Kruglov property.
@article{MZM_2014_96_5_a0,
author = {S. V. Astashkin},
title = {Approximation of {Subspaces} of {Symmetric} {Spaces} {Generated} by {Independent} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {643--652},
publisher = {mathdoc},
volume = {96},
number = {5},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a0/}
}
S. V. Astashkin. Approximation of Subspaces of Symmetric Spaces Generated by Independent Functions. Matematičeskie zametki, Tome 96 (2014) no. 5, pp. 643-652. http://geodesic.mathdoc.fr/item/MZM_2014_96_5_a0/