The Linearity Coefficient of Metric Projections onto One-Dimensional Chebyshev Subspaces of the Space $C$
Matematičeskie zametki, Tome 96 (2014) no. 4, pp. 588-595
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper deals with the operator of metric projection onto an arbitrary one-dimensional Chebyshev subspace $\langle\varphi\rangle$ of the space $C[K]$ of real-valued functions defined and continuous on a Hausdorff compact set $K$. The linearity coefficient of the operator is calculated in terms of the parameters of the generating function $\varphi$. As a consequence, a new estimate of the Lipschitz constant of the operator is obtained.
Keywords:
metric projection operator, Chebyshev subspace, Hausdorff compact set $K$, Lipschitz constant of an operator, Lipschitz condition, Banach space.
@article{MZM_2014_96_4_a9,
author = {K. V. Chesnokova},
title = {The {Linearity} {Coefficient} of {Metric} {Projections} onto {One-Dimensional} {Chebyshev} {Subspaces} of the {Space~}$C$},
journal = {Matemati\v{c}eskie zametki},
pages = {588--595},
year = {2014},
volume = {96},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a9/}
}
TY - JOUR AU - K. V. Chesnokova TI - The Linearity Coefficient of Metric Projections onto One-Dimensional Chebyshev Subspaces of the Space $C$ JO - Matematičeskie zametki PY - 2014 SP - 588 EP - 595 VL - 96 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a9/ LA - ru ID - MZM_2014_96_4_a9 ER -
K. V. Chesnokova. The Linearity Coefficient of Metric Projections onto One-Dimensional Chebyshev Subspaces of the Space $C$. Matematičeskie zametki, Tome 96 (2014) no. 4, pp. 588-595. http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a9/
[1] P. A. Borodin, “Koeffitsient lineinosti operatora metricheskogo proektirovaniya na chebyshevskoe podprostranstvo”, Matem. zametki, 85:2 (2009), 180–188 | DOI | MR | Zbl
[2] A. K. Cline, “Lipschitz conditions on uniform approximation operators”, J. Approx. Theory, 8:2 (1973), 160–172 | DOI | MR | Zbl
[3] A. Haar, “Die Minkowskische Geometrie und die Annäherung an stetige Funktionen”, Math. Ann., 78:1 (1917), 294–311 | DOI | MR | Zbl
[4] P. S. Aleksandrov, Vvedenie v teoriyu mnozhestv i obschuyu topologiyu, Klassika i sovremennost. Matematika, Fizmatlit, M., 2009
[5] V. I. Berdyshev, “Metricheskaya proektsiya na konechnomernye podprostranstva iz $C$ i $L$”, Matem. zametki, 18:4 (1975), 473–488 | MR | Zbl