Mixed Problem for a Cubic Schr\"odinger Evolution Equation with a Cubic Dissipative Term
Matematičeskie zametki, Tome 96 (2014) no. 4, pp. 539-547.

Voir la notice de l'article provenant de la source Math-Net.Ru

The question of the global solvability of a mixed problem for a Schrödinger evolution equation with a cubic dissipative term is considered.
Keywords: Schrödinger evolution equation, Gagliardo–Nirenberg–Sobolev inequality, Cauchy–Bunyakovsky inequality.
@article{MZM_2014_96_4_a5,
     author = {Sh. M. Nasibov},
     title = {Mixed {Problem} for a {Cubic} {Schr\"odinger} {Evolution} {Equation} with a {Cubic} {Dissipative} {Term}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {539--547},
     publisher = {mathdoc},
     volume = {96},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a5/}
}
TY  - JOUR
AU  - Sh. M. Nasibov
TI  - Mixed Problem for a Cubic Schr\"odinger Evolution Equation with a Cubic Dissipative Term
JO  - Matematičeskie zametki
PY  - 2014
SP  - 539
EP  - 547
VL  - 96
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a5/
LA  - ru
ID  - MZM_2014_96_4_a5
ER  - 
%0 Journal Article
%A Sh. M. Nasibov
%T Mixed Problem for a Cubic Schr\"odinger Evolution Equation with a Cubic Dissipative Term
%J Matematičeskie zametki
%D 2014
%P 539-547
%V 96
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a5/
%G ru
%F MZM_2014_96_4_a5
Sh. M. Nasibov. Mixed Problem for a Cubic Schr\"odinger Evolution Equation with a Cubic Dissipative Term. Matematičeskie zametki, Tome 96 (2014) no. 4, pp. 539-547. http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a5/

[1] Sh. M. Nasibov, “Ob odnom nelineinom uravnenii tipa Shredingera”, Differents. uravneniya, 16:4 (1980), 660–670 | MR | Zbl

[2] Sh. M. Nasibov, “Ob ustoichivosti, razrushenii, zatukhanii i samokanalizatsii reshenii odnogo nelineinogo uravneniya Shredingera”, Dokl. AN SSSR, 285:4 (1985), 807–811 | MR | Zbl

[3] Sh. M. Nasibov, “Ob odnom nelineinom uravnenii Shredingera s dissipativnym chlenom”, Dokl. AN SSSR, 304:2 (1989), 285–289 | MR | Zbl

[4] H. Brezis, T. Gallouet, “Nonlinear Schrödinger evolution equations”, Nonlinear Anal., Theory Methods Appl., 4:4 (1980), 677–681 | DOI | MR | Zbl

[5] H. Brezis, “Laser beams and limiting cases of Sobolev inequalities”, Nonlinear partial differential equations and their applications, Collége de France Seminar, Vol. II, Res. Notes in Math., 60, Pitman, Boston, MA, 1981, 86–97 | MR | Zbl

[6] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl

[7] M. V. Vladimirov, “Razreshimost smeshannoi zadachi dlya nelineinogo uravneniya Shredingera”, Matem. sb., 130:4 (1986), 520–536 | MR | Zbl

[8] Sh. M. Nasibov, “Ob optimalnykh konstantakh v nekotorykh neravenstvakh Soboleva i ikh prilozhenii k nelineinomu uravneniyu Shredingera”, Dokl. AN SSSR, 307:3 (1989), 538–542 | MR | Zbl

[9] K. Mcleod, J. Serrin, “Uniqueness of solutions of semilinear Poisson equations”, Proc. Nat. Acad. Sci. U.S.A., 78:11 (1981), 6592–6595 | DOI | MR | Zbl

[10] K. Mcleod, J. Serrin, “Uniqueness of positive radial solutions of $\Delta u+f(u)=0$ in $\mathbb R^n$”, Arch. Rational Mech. Anal., 99:2 (1987), 115–145 | DOI | MR | Zbl

[11] Sh. M. Nasibov, “O tochnoi konstante v odnom neravenstve Soboleva–Nirenberga i ee prilozhenii k otsenke snizu vremeni razrusheniya nelineinogo evolyutsionnogo uravneniya Shredingera s kriticheskoi stepenyu”, Dokl. RAN, 382:6 (2002), 750–753 | MR | Zbl