Asymptotic Integration of Linear Parabolic Problems with High-Frequency Coefficients in the Critical Case
Matematičeskie zametki, Tome 96 (2014) no. 4, pp. 522-538.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a linear second-order parabolic equation with high-frequency coefficients, the complete asymptotics of time-periodic solutions is constructed and justified. The limit averaged stationary problem is assumed degenerate.
Keywords: linear second-order parabolic equation, parabolic equation with high-frequency coefficients, asymptotics of time-periodic solutions, Dirichlet problem, boundary layer method, semigroup, spectral projection.
@article{MZM_2014_96_4_a4,
     author = {V. B. Levenshtam},
     title = {Asymptotic {Integration} of {Linear} {Parabolic} {Problems} with {High-Frequency} {Coefficients} in the {Critical} {Case}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {522--538},
     publisher = {mathdoc},
     volume = {96},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a4/}
}
TY  - JOUR
AU  - V. B. Levenshtam
TI  - Asymptotic Integration of Linear Parabolic Problems with High-Frequency Coefficients in the Critical Case
JO  - Matematičeskie zametki
PY  - 2014
SP  - 522
EP  - 538
VL  - 96
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a4/
LA  - ru
ID  - MZM_2014_96_4_a4
ER  - 
%0 Journal Article
%A V. B. Levenshtam
%T Asymptotic Integration of Linear Parabolic Problems with High-Frequency Coefficients in the Critical Case
%J Matematičeskie zametki
%D 2014
%P 522-538
%V 96
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a4/
%G ru
%F MZM_2014_96_4_a4
V. B. Levenshtam. Asymptotic Integration of Linear Parabolic Problems with High-Frequency Coefficients in the Critical Case. Matematičeskie zametki, Tome 96 (2014) no. 4, pp. 522-538. http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a4/

[1] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR | Zbl

[2] V. B. Simonenko, “Obosnovanie metoda osredneniya dlya abstraktnykh parabolicheskikh uravnenii”, Matem. sb., 81:1 (1970), 53–61 | MR | Zbl

[3] V. B. Levenshtam, “Metod pogransloya i effektivnoe postroenie starshikh priblizhenii metoda osredneniya”, Izv. vuzov. Matem., 1978, no. 3, 48–55 | MR | Zbl

[4] V. B. Levenshtam, “K asimptoticheskomu integrirovaniyu zadachi konvektsii”, Sib. matem. zhurn., 30:4 (1989), 69–75 | MR | Zbl

[5] V. B. Levenshtam, “Asimptoticheskoe razlozhenie resheniya zadachi o vibratsionnoi konvektsii”, Zh. vychisl. matem. i matem. fiz., 40:9 (2000), 1416–1424 | MR | Zbl

[6] V. B. Levenshtam, “Asimptoticheskoe integrirovanie sistemy Nave–Stoksa s bystro ostsilliruyuschei massovoi siloi”, Differents. uravneniya, 37:5 (2001), 696–705 | MR | Zbl

[7] Do Ngok Tkhan, V. B. Levenshtam, “Asimptoticheskoe integrirovanie sistemy differentsialnykh uravnenii s bolshim parametrom v kriticheskom sluchae”, Zh. vychisl. matem. i matem. fiz., 51:6 (2011), 1043–1055 | MR | Zbl

[8] N. T. Do, V. B. Levenshtam, “Asimptoticheskoe integrirovanie sistemy differentsialnykh uravnenii s vysokochastotnymi slagaemymi v kriticheskom sluchae”, Differents. uravneniya, 48:8 (2012), 1190–1192 | Zbl

[9] M. I. Vishik, L. A. Lyusternik, “Reshenie nekotorykh zadach o vozmuschenii v sluchae matrits i samosopryazhennykh i nesamosopryazhennykh differentsialnykh uravnenii. I”, UMN, 15:3 (1960), 3–80 | MR | Zbl

[10] V. V. Gusachenko, E. A. Ilicheva, V. B. Levenshtam, “Lineinaya parabolicheskaya zadacha. Vysokochastotnaya asimptotika v kriticheskom sluchae”, Zh. vychisl. matem. i matem. fiz., 53:7 (2013), 1067–1081 | DOI | Zbl

[11] E. A. Koddington, N. Levinson, Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958 | MR | Zbl

[12] M. I. Vishik, L. A. Lyusternik, “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya lineinykh differentsialnykh uravnenii s malym parametrom”, UMN, 12:5 (1957), 3–122 | MR | Zbl

[13] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR | Zbl

[14] L. K. Evans, Uravneniya s chastnymi proizvodnymi, Universitetskaya seriya, 7, Tamara Rozhkovskaya, Novosibirsk, 2003 | MR | Zbl

[15] V. F. Solonnikov, “O kraevykh zadachakh dlya lineinykh parabolicheskikh sistem differentsialnykh uravnenii obschego vida”, Kraevye zadachi matematicheskoi fiziki. 3. O kraevykh zadachakh dlya lineinykh parabolicheskikh sistem differentsialnykh uravnenii obschego vida, Tr. MIAN SSSR, 83, 1965, 3–163 | MR | Zbl

[16] M. Z. Solomyak, “Primenenie teorii polugrupp k issledovaniyu differentsialnykh uravnenii v prostranstvakh Banakha”, Dokl. AN SSSR, 122 (1958), 766–769 | MR | Zbl

[17] M. A. Krasnoselskii, P. P. Zabreiko, E. I. Pustylnik, P. E. Sobolevskii, Integralnye operatory v prostranstvakh summiruemykh funktsii, Nauka, M., 1966 | MR | Zbl

[18] V. I. Yudovich, Metod linearizatsii v gidrodinamicheskoi teorii ustoichivosti, Izd-vo RGU, Rostov-na-Donu, 1985

[19] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 1. Funktsionalnyi analiz, Mir, M., 1977 | MR

[20] V. B. Levenshtam, “O vzaimosvyazi dvukh klassov reshenii uravnenii Nave–Stoksa”, Vladikavk. matem. zhurn., 12:3 (2010), 56–66 | Zbl