Keywords: fractional integral, Bernstein inequality, Favard inequality, Lobachevskii function.
@article{MZM_2014_96_4_a14,
author = {\`E. A. Storozhenko and L. G. Kovalenko},
title = {Inequality for {Fractional} {Integrals} of {Complex} {Polynomials} in~$L_0$},
journal = {Matemati\v{c}eskie zametki},
pages = {633--636},
year = {2014},
volume = {96},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a14/}
}
È. A. Storozhenko; L. G. Kovalenko. Inequality for Fractional Integrals of Complex Polynomials in $L_0$. Matematičeskie zametki, Tome 96 (2014) no. 4, pp. 633-636. http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a14/
[1] K. Mahler, Proc. Roy. Soc. London Ser. A, 264 (1961), 145–154 | DOI | MR | Zbl
[2] V. V. Arestov, Matem. zametki, 48:4 (1990), 7–18 | MR | Zbl
[3] T. M. Flett, Pacif. J. Math., 25:3 (1968), 463–494 | DOI | MR | Zbl
[4] T. M. Flett, “Temperatures, Bessel potentials and Lipschitz Spaies”, Proc. London Math. Soc. (3), 22:3 (1971), 385–451 | DOI | MR | Zbl
[5] N. G. de Bruijn, T. A. Springer, Indag. Math., 9 (1947), 406–414 | MR | Zbl
[6] V. V. Arestov, Izv. AN SSSR. Ser. matem., 45:1 (1981), 3–22 | MR | Zbl
[7] G. Polia, G. Sege, Zadachi i teoremy iz analiza. Ch. 2. Teoriya funktsii. Raspredelenie nulei. Polinomy. Opredeliteli. Teoriya chisel, Nauka, M., 1978 | MR | Zbl
[8] I. S. Grandshtein, I. M. Ryzhik, Tablitsy integralov, summ i proizvedenii, GITTL, M., 1964
[9] E. A. Storozhenko, Matem. sb., 187:5 (1996), 111–120 | DOI | MR | Zbl