Stability in Part of the Variables of ``Partial'' Equilibria of Systems with Aftereffect
Matematičeskie zametki, Tome 96 (2014) no. 4, pp. 496-503.

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of stability in part of the variables of a “partial” equilibrium (this means that a given part of the phase vector coordinates is zero) is considered for nonlinear nonstationary systems of functional differential equations with aftereffect. The notions of stability in part of the variables, which admit more general (compared with the known ones) assumptions about the values of the supremum-norm of the components of the initial vector function corresponding to the variables that do not determine the given equilibrium, are introduced. The stability and asymptotic stability conditions of the the type mentioned above are obtained in the context of the method of Lyapunov–Krasovskii functionals; this conditions allow generalization of several well-known results.
Keywords: stability in part of the variables, “partial” equilibrium, functional differential equations with aftereffect.
@article{MZM_2014_96_4_a1,
     author = {V. I. Vorotnikov and Yu. G. Martyshenko},
     title = {Stability in {Part} of the {Variables} of {``Partial''} {Equilibria} of {Systems} with {Aftereffect}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {496--503},
     publisher = {mathdoc},
     volume = {96},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a1/}
}
TY  - JOUR
AU  - V. I. Vorotnikov
AU  - Yu. G. Martyshenko
TI  - Stability in Part of the Variables of ``Partial'' Equilibria of Systems with Aftereffect
JO  - Matematičeskie zametki
PY  - 2014
SP  - 496
EP  - 503
VL  - 96
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a1/
LA  - ru
ID  - MZM_2014_96_4_a1
ER  - 
%0 Journal Article
%A V. I. Vorotnikov
%A Yu. G. Martyshenko
%T Stability in Part of the Variables of ``Partial'' Equilibria of Systems with Aftereffect
%J Matematičeskie zametki
%D 2014
%P 496-503
%V 96
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a1/
%G ru
%F MZM_2014_96_4_a1
V. I. Vorotnikov; Yu. G. Martyshenko. Stability in Part of the Variables of ``Partial'' Equilibria of Systems with Aftereffect. Matematičeskie zametki, Tome 96 (2014) no. 4, pp. 496-503. http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a1/

[1] N. N. Krasovskii, Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959 | MR | Zbl

[2] J. Hale, Theory of Functional Differential Equations, Appl. Math. Sci., 3, Springer-Verlag, New York, 1977 | MR | Zbl

[3] T. A. Burton, “Uniform asymptotic stability in functional differential equations”, Proc. Amer. Math. Soc., 68:3 (1978), 195–199 | DOI | MR | Zbl

[4] A. S. Andreev, “Metod funktsionalov Lyapunova v zadache ob ustoichivosti funktsionalno-differentsialnykh uravnenii”, Avtomat. i telemekh., 2009, no. 9, 4–55 | MR | Zbl

[5] V. V. Rumyantsev, A. S. Oziraner, Ustoichivost i stabilizatsiya dvizheniya otnositelno chasti peremennykh, Nauka, M., 1987 | MR | Zbl

[6] V. I. Vorotnikov, Partial Stability and Control, Birkhäuser Boston, Boston, MA, 1998 | MR | Zbl

[7] S. N. Dashkovskii, D. V. Efimov, E. D. Contag, “Ustoichivost ot vkhoda k sostoyaniyu i smezhnye svoistva sistem”, Avtomat. i telemekh., 2011, no. 8, 3–40 | MR | Zbl

[8] S. R. Bernfeld, C. Corduneanu, A. O. Ignatyev, “On the stability of invariant sets of functional differential equations”, Nonlinear Anal., Theory Methods Appl., 55:6 (2003), 641–656 | DOI | MR | Zbl

[9] A. O. Ignatyev, “On the partial equiasymptotic stability in functional-differential equations”, J. Math. Anal. Appl., 268:2 (2002), 615–628 | DOI | MR | Zbl

[10] V. I. Vorotnikov, “Chastichnaya ustoichivost i upravlenie: sostoyanie problemy i perspektivy razvitiya”, Avtomat. i telemekh., 2005, no. 4, 3–59 | MR | Zbl

[11] I. Karafyllis, P. Pepe, Z.-P. Jiang, “Global output stability for systems described by retarded functional differential equations”, European J. Control, 14:6 (2008), 516–536 | DOI | MR

[12] V. I. Vorotnikov, “Ob ustoichivosti i ustoichivosti po chasti peremennykh “chastichnykh” polozhenii ravnovesiya nelineinykh dinamicheskikh sistem”, Dokl. RAN, 389:3 (2003), 332–337 | MR

[13] V. I. Vorotnikov, Yu. G. Martyshenko, “K teorii chastichnoi ustoichivosti nelineinykh dinamicheskikh sistem”, Izv. RAN. Teoriya i sistemy upravleniya, 2010, no. 5, 23–31 | MR | Zbl

[14] Y. Lin, E. D. Sontag, Y. A. Wang, “A smooth converse Lyapunov theorem for robust stability”, SIAM J. Control Optim., 34:1 (1996), 124–160 | DOI | MR | Zbl

[15] C. M. Kellett, A. R. Teel, “Weak converse Lyapunov theorems and control-Lyapunov functions”, SIAM J. Control Optim., 42:6 (2004), 1934–1959 | DOI | MR | Zbl

[16] D. V. Efimov, Robastnoe i adaptivnoe upravlenie nelineinymi kolebaniyami, Nauka, SPb., 2005