Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_96_4_a1, author = {V. I. Vorotnikov and Yu. G. Martyshenko}, title = {Stability in {Part} of the {Variables} of {``Partial''} {Equilibria} of {Systems} with {Aftereffect}}, journal = {Matemati\v{c}eskie zametki}, pages = {496--503}, publisher = {mathdoc}, volume = {96}, number = {4}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a1/} }
TY - JOUR AU - V. I. Vorotnikov AU - Yu. G. Martyshenko TI - Stability in Part of the Variables of ``Partial'' Equilibria of Systems with Aftereffect JO - Matematičeskie zametki PY - 2014 SP - 496 EP - 503 VL - 96 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a1/ LA - ru ID - MZM_2014_96_4_a1 ER -
V. I. Vorotnikov; Yu. G. Martyshenko. Stability in Part of the Variables of ``Partial'' Equilibria of Systems with Aftereffect. Matematičeskie zametki, Tome 96 (2014) no. 4, pp. 496-503. http://geodesic.mathdoc.fr/item/MZM_2014_96_4_a1/
[1] N. N. Krasovskii, Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959 | MR | Zbl
[2] J. Hale, Theory of Functional Differential Equations, Appl. Math. Sci., 3, Springer-Verlag, New York, 1977 | MR | Zbl
[3] T. A. Burton, “Uniform asymptotic stability in functional differential equations”, Proc. Amer. Math. Soc., 68:3 (1978), 195–199 | DOI | MR | Zbl
[4] A. S. Andreev, “Metod funktsionalov Lyapunova v zadache ob ustoichivosti funktsionalno-differentsialnykh uravnenii”, Avtomat. i telemekh., 2009, no. 9, 4–55 | MR | Zbl
[5] V. V. Rumyantsev, A. S. Oziraner, Ustoichivost i stabilizatsiya dvizheniya otnositelno chasti peremennykh, Nauka, M., 1987 | MR | Zbl
[6] V. I. Vorotnikov, Partial Stability and Control, Birkhäuser Boston, Boston, MA, 1998 | MR | Zbl
[7] S. N. Dashkovskii, D. V. Efimov, E. D. Contag, “Ustoichivost ot vkhoda k sostoyaniyu i smezhnye svoistva sistem”, Avtomat. i telemekh., 2011, no. 8, 3–40 | MR | Zbl
[8] S. R. Bernfeld, C. Corduneanu, A. O. Ignatyev, “On the stability of invariant sets of functional differential equations”, Nonlinear Anal., Theory Methods Appl., 55:6 (2003), 641–656 | DOI | MR | Zbl
[9] A. O. Ignatyev, “On the partial equiasymptotic stability in functional-differential equations”, J. Math. Anal. Appl., 268:2 (2002), 615–628 | DOI | MR | Zbl
[10] V. I. Vorotnikov, “Chastichnaya ustoichivost i upravlenie: sostoyanie problemy i perspektivy razvitiya”, Avtomat. i telemekh., 2005, no. 4, 3–59 | MR | Zbl
[11] I. Karafyllis, P. Pepe, Z.-P. Jiang, “Global output stability for systems described by retarded functional differential equations”, European J. Control, 14:6 (2008), 516–536 | DOI | MR
[12] V. I. Vorotnikov, “Ob ustoichivosti i ustoichivosti po chasti peremennykh “chastichnykh” polozhenii ravnovesiya nelineinykh dinamicheskikh sistem”, Dokl. RAN, 389:3 (2003), 332–337 | MR
[13] V. I. Vorotnikov, Yu. G. Martyshenko, “K teorii chastichnoi ustoichivosti nelineinykh dinamicheskikh sistem”, Izv. RAN. Teoriya i sistemy upravleniya, 2010, no. 5, 23–31 | MR | Zbl
[14] Y. Lin, E. D. Sontag, Y. A. Wang, “A smooth converse Lyapunov theorem for robust stability”, SIAM J. Control Optim., 34:1 (1996), 124–160 | DOI | MR | Zbl
[15] C. M. Kellett, A. R. Teel, “Weak converse Lyapunov theorems and control-Lyapunov functions”, SIAM J. Control Optim., 42:6 (2004), 1934–1959 | DOI | MR | Zbl
[16] D. V. Efimov, Robastnoe i adaptivnoe upravlenie nelineinymi kolebaniyami, Nauka, SPb., 2005