Monotonicity Conditions for a Class of Quasilinear Differential Operators Depending on Parameters
Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 405-417.

Voir la notice de l'article provenant de la source Math-Net.Ru

A special class of quasilinear differential operators depending on a finite number of parameters is introduced and necessary and sufficient monotonicity conditions for such operators are found.
Keywords: quasilinear differential operator, monotonicity conditions for a differential operator, Lipschitz boundary, conditional extremum problem.
Mots-clés : Lebesgue space
@article{MZM_2014_96_3_a9,
     author = {G. I. Laptev},
     title = {Monotonicity {Conditions} for a {Class} of {Quasilinear} {Differential} {Operators} {Depending} on {Parameters}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {405--417},
     publisher = {mathdoc},
     volume = {96},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a9/}
}
TY  - JOUR
AU  - G. I. Laptev
TI  - Monotonicity Conditions for a Class of Quasilinear Differential Operators Depending on Parameters
JO  - Matematičeskie zametki
PY  - 2014
SP  - 405
EP  - 417
VL  - 96
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a9/
LA  - ru
ID  - MZM_2014_96_3_a9
ER  - 
%0 Journal Article
%A G. I. Laptev
%T Monotonicity Conditions for a Class of Quasilinear Differential Operators Depending on Parameters
%J Matematičeskie zametki
%D 2014
%P 405-417
%V 96
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a9/
%G ru
%F MZM_2014_96_3_a9
G. I. Laptev. Monotonicity Conditions for a Class of Quasilinear Differential Operators Depending on Parameters. Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 405-417. http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a9/

[1] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl

[2] I. V. Skrypnik, Metody issledovaniya nelineinykh ellipticheskikh granichnykh zadach, Nauka, M., 1990 | MR | Zbl

[3] Kh. Gaevskii, K. Greger, K. Zakharias, Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR

[4] A. Kufner, S. Fuchik, Nelineinye differentsialnye uravneniya, Nauka, M., 1988 | MR | Zbl

[5] G. I. Laptev, “Usloviya monotonnosti operatorov Nemytskogo so stepennymi nelineinostyami”, Uch. zap. Rossiiskogo gos. sots. un-ta, no. 7, 2009, 223–228