Uniform Boundedness in Part of the Variables of Solutions to Systems of Differential Equations with Partially Controllable Initial Conditions
Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 393-404.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the development of the theory of boundedness in part of the variables of solutions to systems of differential equations, which is in fact a version of the Lyapunov direct method in the theory of stability.
Keywords: boundedness in part of the variables, differential equations, stability, Lyapunov direct method.
@article{MZM_2014_96_3_a8,
     author = {K. S. Lapin},
     title = {Uniform {Boundedness} in {Part} of the {Variables} of {Solutions} to {Systems} of {Differential} {Equations} with {Partially} {Controllable} {Initial} {Conditions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {393--404},
     publisher = {mathdoc},
     volume = {96},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a8/}
}
TY  - JOUR
AU  - K. S. Lapin
TI  - Uniform Boundedness in Part of the Variables of Solutions to Systems of Differential Equations with Partially Controllable Initial Conditions
JO  - Matematičeskie zametki
PY  - 2014
SP  - 393
EP  - 404
VL  - 96
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a8/
LA  - ru
ID  - MZM_2014_96_3_a8
ER  - 
%0 Journal Article
%A K. S. Lapin
%T Uniform Boundedness in Part of the Variables of Solutions to Systems of Differential Equations with Partially Controllable Initial Conditions
%J Matematičeskie zametki
%D 2014
%P 393-404
%V 96
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a8/
%G ru
%F MZM_2014_96_3_a8
K. S. Lapin. Uniform Boundedness in Part of the Variables of Solutions to Systems of Differential Equations with Partially Controllable Initial Conditions. Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 393-404. http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a8/

[1] T. Yoshizawa, “Liapunovs function and boundedness of solutions”, Funkcial. Ekvac., 2 (1959), 95–142 ; Sb. per. Matematika, 5 (1965), 95–127 | MR | Zbl

[2] V. V. Rumyantsev, A. S. Oziraner, Ustoichivost i stabilizatsiya dvizheniya otnositelno chasti peremennykh, Nauka, M., 1987 | MR | Zbl

[3] V. I. Vorotnikov, Yu. G. Martyshenko, “K teorii chastichnoi ustoichivosti nelineinykh dinamicheskikh sistem”, Izv. RAN. Teoriya i sistemy upravleniya, 2010, no. 5, 23–31 | MR | Zbl

[4] N. Rush, P. Abets, M. Lalua, Pryamoi metod Lyapunova v teorii ustoichivosti, Mir, M., 1980 | MR