Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_96_3_a7, author = {R. A. Konev and V. V. Ryzhikov}, title = {On the {Collection} of {Spectral} {Multiplicities} $\{2,4,\dots,2^n\}$ for {Totally} {Ergodic} $\mathbb{Z}^2${-Actions}}, journal = {Matemati\v{c}eskie zametki}, pages = {383--392}, publisher = {mathdoc}, volume = {96}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a7/} }
TY - JOUR AU - R. A. Konev AU - V. V. Ryzhikov TI - On the Collection of Spectral Multiplicities $\{2,4,\dots,2^n\}$ for Totally Ergodic $\mathbb{Z}^2$-Actions JO - Matematičeskie zametki PY - 2014 SP - 383 EP - 392 VL - 96 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a7/ LA - ru ID - MZM_2014_96_3_a7 ER -
%0 Journal Article %A R. A. Konev %A V. V. Ryzhikov %T On the Collection of Spectral Multiplicities $\{2,4,\dots,2^n\}$ for Totally Ergodic $\mathbb{Z}^2$-Actions %J Matematičeskie zametki %D 2014 %P 383-392 %V 96 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a7/ %G ru %F MZM_2014_96_3_a7
R. A. Konev; V. V. Ryzhikov. On the Collection of Spectral Multiplicities $\{2,4,\dots,2^n\}$ for Totally Ergodic $\mathbb{Z}^2$-Actions. Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 383-392. http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a7/
[1] D. V. Anosov, “O spektralnykh kratnostyakh v ergodicheskoi teorii”, Sovr. probl. matem., 3, MIAN, M., 2003, 3–85 | DOI | DOI | MR | Zbl
[2] G. R. Goodson, “A survey of recent results in the spectral theory of ergodic dynamical systems”, J. Dynam. Control Systems, 5:2 (1999), 173–226 | DOI | MR | Zbl
[3] A. I. Danilenko, “A survey on spectral multiplicities of ergodic actions”, Ergodic Theory Dynam. Systems, 33:1 (2013), 81–117 | DOI | MR | Zbl
[4] V. V. Ryzhikov, “Transformations having homogeneous spectra”, J. Dynam. Control Systems, 5:1 (1999), 145–148 | DOI | MR | Zbl
[5] O. N. Ageev, “On ergodic transformations with homogeneous spectrum”, J. Dynam. Control Systems, 5:1 (1999), 149–152 | DOI | MR | Zbl
[6] V. V. Ryzhikov, “Spektralnye kratnosti i asimptoticheskie operatornye svoistva deistvii s invariantnoi meroi”, Matem. sb., 200:12 (2009), 107–120 | DOI | MR | Zbl
[7] A. Katok, M. Lemańczyk, “Some new cases of realization of spectral multiplicity function for ergodic transformations”, Fund. Math., 206 (2009), 185–215 | DOI | MR | Zbl
[8] A. I. Danilenko, M. Lemańczyk, “Spectral multiplicities for ergodic flows”, Discrete Contin. Dyn. Syst., 33:9 (2013), 4271–4289 | MR | Zbl
[9] A. V. Solomko, “New spectral multiplicities for ergodic actions”, Studia Math., 208:3 (2012), 229–247 | DOI | MR | Zbl
[10] V. V. Ryzhikov, “Slabye predely stepenei, prostoi spektr simmetricheskikh proizvedenii i peremeshivayuschie konstruktsii ranga 1”, Matem. sb., 198:5 (2007), 137–159 | DOI | MR | Zbl
[11] S. V. Tikhonov, “Peremeshivayuschie preobrazovaniya s odnorodnym spektrom”, Matem. sb., 202:8 (2011), 139–160 | DOI | MR | Zbl
[12] A. M. Stepin, “Spektralnye svoistva tipichnykh dinamicheskikh sistem”, Izv. AN SSSR. Ser. matem., 50:4 (1986), 801–834 | MR | Zbl