On the Collection of Spectral Multiplicities $\{2,4,\dots,2^n\}$ for Totally Ergodic $\mathbb{Z}^2$-Actions
Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 383-392.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the realization of collections of spectral multiplicities for ergodic $\mathbb{Z}^2$-actions. Sufficient conditions ensuring the realizability of multiplicities of the form $\{2,4,\dots,2^n\}$ are given.
Keywords: collection of spectral multiplicities $\{2,4,\dots,2^n\}$, ergodic $\mathbb{Z}^2$-action, spectral multiplicity of an ergodic action, linear envelope, cyclic vector.
@article{MZM_2014_96_3_a7,
     author = {R. A. Konev and V. V. Ryzhikov},
     title = {On the {Collection} of {Spectral} {Multiplicities} $\{2,4,\dots,2^n\}$ for {Totally} {Ergodic} $\mathbb{Z}^2${-Actions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {383--392},
     publisher = {mathdoc},
     volume = {96},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a7/}
}
TY  - JOUR
AU  - R. A. Konev
AU  - V. V. Ryzhikov
TI  - On the Collection of Spectral Multiplicities $\{2,4,\dots,2^n\}$ for Totally Ergodic $\mathbb{Z}^2$-Actions
JO  - Matematičeskie zametki
PY  - 2014
SP  - 383
EP  - 392
VL  - 96
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a7/
LA  - ru
ID  - MZM_2014_96_3_a7
ER  - 
%0 Journal Article
%A R. A. Konev
%A V. V. Ryzhikov
%T On the Collection of Spectral Multiplicities $\{2,4,\dots,2^n\}$ for Totally Ergodic $\mathbb{Z}^2$-Actions
%J Matematičeskie zametki
%D 2014
%P 383-392
%V 96
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a7/
%G ru
%F MZM_2014_96_3_a7
R. A. Konev; V. V. Ryzhikov. On the Collection of Spectral Multiplicities $\{2,4,\dots,2^n\}$ for Totally Ergodic $\mathbb{Z}^2$-Actions. Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 383-392. http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a7/

[1] D. V. Anosov, “O spektralnykh kratnostyakh v ergodicheskoi teorii”, Sovr. probl. matem., 3, MIAN, M., 2003, 3–85 | DOI | DOI | MR | Zbl

[2] G. R. Goodson, “A survey of recent results in the spectral theory of ergodic dynamical systems”, J. Dynam. Control Systems, 5:2 (1999), 173–226 | DOI | MR | Zbl

[3] A. I. Danilenko, “A survey on spectral multiplicities of ergodic actions”, Ergodic Theory Dynam. Systems, 33:1 (2013), 81–117 | DOI | MR | Zbl

[4] V. V. Ryzhikov, “Transformations having homogeneous spectra”, J. Dynam. Control Systems, 5:1 (1999), 145–148 | DOI | MR | Zbl

[5] O. N. Ageev, “On ergodic transformations with homogeneous spectrum”, J. Dynam. Control Systems, 5:1 (1999), 149–152 | DOI | MR | Zbl

[6] V. V. Ryzhikov, “Spektralnye kratnosti i asimptoticheskie operatornye svoistva deistvii s invariantnoi meroi”, Matem. sb., 200:12 (2009), 107–120 | DOI | MR | Zbl

[7] A. Katok, M. Lemańczyk, “Some new cases of realization of spectral multiplicity function for ergodic transformations”, Fund. Math., 206 (2009), 185–215 | DOI | MR | Zbl

[8] A. I. Danilenko, M. Lemańczyk, “Spectral multiplicities for ergodic flows”, Discrete Contin. Dyn. Syst., 33:9 (2013), 4271–4289 | MR | Zbl

[9] A. V. Solomko, “New spectral multiplicities for ergodic actions”, Studia Math., 208:3 (2012), 229–247 | DOI | MR | Zbl

[10] V. V. Ryzhikov, “Slabye predely stepenei, prostoi spektr simmetricheskikh proizvedenii i peremeshivayuschie konstruktsii ranga 1”, Matem. sb., 198:5 (2007), 137–159 | DOI | MR | Zbl

[11] S. V. Tikhonov, “Peremeshivayuschie preobrazovaniya s odnorodnym spektrom”, Matem. sb., 202:8 (2011), 139–160 | DOI | MR | Zbl

[12] A. M. Stepin, “Spektralnye svoistva tipichnykh dinamicheskikh sistem”, Izv. AN SSSR. Ser. matem., 50:4 (1986), 801–834 | MR | Zbl