Homotopy Invariance of Perturbations of $D_\infty$-Differential Modules
Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 374-382.

Voir la notice de l'article provenant de la source Math-Net.Ru

The notion of a perturbation of a $D_\infty$-differential module is introduced. It is shown that the perturbations of a $D_\infty$-differential module are homotopy invariant.
Keywords: $D_\infty$-differential module, perturbation of a $D_\infty$-differential module, strong deformation retraction of $D_\infty$-differential modules, SDR-data for $D_\infty$-differential modules, homotopy invariance of perturbations of $D_\infty$-differential modules.
@article{MZM_2014_96_3_a6,
     author = {Ya. Gouda},
     title = {Homotopy {Invariance} of {Perturbations} of $D_\infty${-Differential} {Modules}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {374--382},
     publisher = {mathdoc},
     volume = {96},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a6/}
}
TY  - JOUR
AU  - Ya. Gouda
TI  - Homotopy Invariance of Perturbations of $D_\infty$-Differential Modules
JO  - Matematičeskie zametki
PY  - 2014
SP  - 374
EP  - 382
VL  - 96
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a6/
LA  - ru
ID  - MZM_2014_96_3_a6
ER  - 
%0 Journal Article
%A Ya. Gouda
%T Homotopy Invariance of Perturbations of $D_\infty$-Differential Modules
%J Matematičeskie zametki
%D 2014
%P 374-382
%V 96
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a6/
%G ru
%F MZM_2014_96_3_a6
Ya. Gouda. Homotopy Invariance of Perturbations of $D_\infty$-Differential Modules. Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 374-382. http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a6/

[1] V. K. A. M. Gugenheim, “On the chain-complex of a fibration”, Illinois J. Math., 16 (1972), 398–414 | MR | Zbl

[2] V. K. A. M. Gugenheim, L. A. Lambe, “Perturbation theory in differential homologies algebra. I”, Illinois J. Math., 33:4 (1989), 566–582 | MR | Zbl

[3] V. K. A. M. Gugenheim, L. A. Lambe, J. D. Stasheff, “Perturbation theory in differential homological algebra. II”, Illinois J. Math., 35:3 (1991), 357–373 | MR | Zbl

[4] S. V. Lapin, “Differentsialnye vozmuscheniya i $D_\infty $-differentsialnye moduli”, Matem. sb., 192:11 (2001), 55–76 | DOI | MR | Zbl

[5] S. V. Lapin, “$D_\infty$-differentsialnye $E_\infty$-algebry i spektralnye posledovatelnosti rassloenii”, Matem. sb., 198:10 (2007), 3–30 | DOI | MR | Zbl

[6] J. P. Serre, “Homologie singulière des espaces fibrés. Applications”, Ann. of Math. (2), 54:3 (1951), 425–505 | DOI | MR | Zbl