Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_96_3_a6, author = {Ya. Gouda}, title = {Homotopy {Invariance} of {Perturbations} of $D_\infty${-Differential} {Modules}}, journal = {Matemati\v{c}eskie zametki}, pages = {374--382}, publisher = {mathdoc}, volume = {96}, number = {3}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a6/} }
Ya. Gouda. Homotopy Invariance of Perturbations of $D_\infty$-Differential Modules. Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 374-382. http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a6/
[1] V. K. A. M. Gugenheim, “On the chain-complex of a fibration”, Illinois J. Math., 16 (1972), 398–414 | MR | Zbl
[2] V. K. A. M. Gugenheim, L. A. Lambe, “Perturbation theory in differential homologies algebra. I”, Illinois J. Math., 33:4 (1989), 566–582 | MR | Zbl
[3] V. K. A. M. Gugenheim, L. A. Lambe, J. D. Stasheff, “Perturbation theory in differential homological algebra. II”, Illinois J. Math., 35:3 (1991), 357–373 | MR | Zbl
[4] S. V. Lapin, “Differentsialnye vozmuscheniya i $D_\infty $-differentsialnye moduli”, Matem. sb., 192:11 (2001), 55–76 | DOI | MR | Zbl
[5] S. V. Lapin, “$D_\infty$-differentsialnye $E_\infty$-algebry i spektralnye posledovatelnosti rassloenii”, Matem. sb., 198:10 (2007), 3–30 | DOI | MR | Zbl
[6] J. P. Serre, “Homologie singulière des espaces fibrés. Applications”, Ann. of Math. (2), 54:3 (1951), 425–505 | DOI | MR | Zbl