Extensions of the Endomorphism Algebra of Weak Comodule Algebras
Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 361-373.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H$ be a weak Hopf algebra, and let $A/B$ be a weak right $H$-Galois extension. In this paper, we mainly discuss the extension of the endomorphism algebra of a module over $A$. A necessary and sufficient condition for such an extension of the endomorphism algebra to be weak $H$-Galois is obtained by using Hopf–Galois theory and Morita theory.
Keywords: weak $H$-Galois extension, weak Doi–Hopf module, endomorphism algebra
Mots-clés : Morita context.
@article{MZM_2014_96_3_a5,
     author = {Z. W. Wang and Y. Y. Chen and L. Yu. Zhang},
     title = {Extensions of the {Endomorphism} {Algebra} of {Weak} {Comodule} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {361--373},
     publisher = {mathdoc},
     volume = {96},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a5/}
}
TY  - JOUR
AU  - Z. W. Wang
AU  - Y. Y. Chen
AU  - L. Yu. Zhang
TI  - Extensions of the Endomorphism Algebra of Weak Comodule Algebras
JO  - Matematičeskie zametki
PY  - 2014
SP  - 361
EP  - 373
VL  - 96
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a5/
LA  - ru
ID  - MZM_2014_96_3_a5
ER  - 
%0 Journal Article
%A Z. W. Wang
%A Y. Y. Chen
%A L. Yu. Zhang
%T Extensions of the Endomorphism Algebra of Weak Comodule Algebras
%J Matematičeskie zametki
%D 2014
%P 361-373
%V 96
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a5/
%G ru
%F MZM_2014_96_3_a5
Z. W. Wang; Y. Y. Chen; L. Yu. Zhang. Extensions of the Endomorphism Algebra of Weak Comodule Algebras. Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 361-373. http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a5/

[1] F. Van Oyastaeyen, Y. H. Zhang, “$H$-module endomorphism rings”, J. Pure Appl. Algebra, 102:2 (1995), 207–219 | DOI | MR

[2] G. Böhm, F. Nill, K. Szlachányi, “Weak Hopf algebras. I. Integral theory and $C^*$-structure”, J. Algebra, 221:2 (1999), 385–438 | DOI | MR | Zbl

[3] T. Hayashi, “Quantum group symmetry of partition functions of IRF models and its applications to Jones's index theory”, Comm. Math. Phys., 157:2 (1993), 331–345 | DOI | MR | Zbl

[4] D. Nikshych, L. Vainerman, “Finite quantum groupoids and their applications”, New Directions in Hopf Algebras, Math. Sci. Res. Inst. Publ., 43, Cambridge Univ. Press, Cambridge, 2002, 211–262 | MR | Zbl

[5] T. Yamanouchi, “Duality for generalized Kac algebras and a characteriztion of finite groupoid algebras”, J. Algebra, 163:1 (1994), 9–50 | DOI | MR | Zbl

[6] Yu. Vang, L. Yu. Zhang, “Strukturnaya teorema dlya slabykh modulnykh koalgebr”, Matem. zametki, 88:1 (2010), 3–17 | DOI | MR | Zbl

[7] R. F. Niu, Y. Wang, L. Y. Zhang, “The structure theorem of endmorphism algebras for weak Doi–Hopf modules”, Acta Math. Hungar., 127:3 (2010), 273–290 | DOI | MR | Zbl

[8] Y. Wang, L. Y. Zhang, “The structure theorem and duality theorem for endomorphism algebras of weak Hopf algebras”, J. Pure Appl. Algebra, 215:6 (2011), 1133–1145 | DOI | MR | Zbl

[9] L. Y. Zhang, “Maschke-type theorem and Morita context over weak Hopf algebras”, Sci. China Ser. A, 49:5 (2006), 587–598 | DOI | MR | Zbl

[10] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Regional Conf. Ser. in Math., 82, Amer. Math. Soc., Providence, RI, 1993 | MR | Zbl

[11] M. E. Sweedler, Hopf Algebras, Math. Lecture Note Ser., W. A. Benjamin, New York, 1969 | MR

[12] S. Caenepeel, E. De Groot, “Modules over weak entwining structures”, New Trends in Hopf Algebra Theory, Contemp. Math., 267, Amer. Math. Soc., Providence, RI, 2000, 31–54 | DOI | MR | Zbl

[13] G. Böhm, “Doi–Hopf modules over weak Hopf algebras”, Comm. Algebra, 28:10 (2000), 4687–4698 | DOI | MR | Zbl

[14] A. B. Rodríguez Raposo, “Crossed Products for Weak Hopf Algebras”, Comm. Algebra, 37:7 (2009), 2274–2289 | DOI | MR | Zbl

[15] X. Zhou, S. H. Wang, “The duality theorem for weak Hopf algebra (co)actions”, Comm. Algebra, 38:12 (2010), 4613–4632 | DOI | MR | Zbl

[16] D. Nikshych, “On the structure of weak Hopf algebras”, Adv. Math., 170:2 (2002), 257–286 | DOI | MR | Zbl

[17] S. Caenepeel, E. De Groot, “Galois theory for weak Hopf algebras”, Rev. Roumaine Math. Pures Appl., 52:2 (2007), 151–176 | MR | Zbl

[18] L. Chzhan, Ya. Li, “Gomomorfizmy, separabelnye rasshireniya i otobrazheniya Morita dlya slabykh modulnykh algebr”, Sib. matem. zhurn., 52:1 (2011), 210–222 | MR | Zbl

[19] G. Böhm, “Galois theory for Hopf algebroids”, Ann. Univ. Ferrara Sez. VII (N.S.), 51 (2005), 233–262 | MR | Zbl

[20] X. Y. Zhou, “Homological dimension of weak Hopf–Galois extensions”, Acta Math. Hungar., 138:1-2 (2013), 140–146 | DOI | MR | Zbl