Embedding of Sobolev Spaces and Properties of the Domain
Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 343-349.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish the embedding of the Sobolev space $W_p^s(G)\subset L_q(G)$ for an irregular domain $G$ in the case of a limit exponent under new relations between the parameters depending on the geometric properties of the domain $G$.
Keywords: Sobolev space, Sobolev embedding theorem, domain with flexible $\sigma$-cone condition, Hölder's inequality, Marcinkiewicz interpolation theorem.
@article{MZM_2014_96_3_a3,
     author = {O. V. Besov},
     title = {Embedding of {Sobolev} {Spaces} and {Properties} of the {Domain}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {343--349},
     publisher = {mathdoc},
     volume = {96},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a3/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Embedding of Sobolev Spaces and Properties of the Domain
JO  - Matematičeskie zametki
PY  - 2014
SP  - 343
EP  - 349
VL  - 96
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a3/
LA  - ru
ID  - MZM_2014_96_3_a3
ER  - 
%0 Journal Article
%A O. V. Besov
%T Embedding of Sobolev Spaces and Properties of the Domain
%J Matematičeskie zametki
%D 2014
%P 343-349
%V 96
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a3/
%G ru
%F MZM_2014_96_3_a3
O. V. Besov. Embedding of Sobolev Spaces and Properties of the Domain. Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 343-349. http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a3/

[1] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR | Zbl

[2] V. G. Mazya, Prostranstva S. L. Soboleva, Izd-vo Leningradsk. un-ta, L., 1985 | MR | Zbl

[3] V. M. Goldshtein, Yu. G. Reshetnyak, Vvedenie v teoriyu funktsii s obobschennymi proizvodnymi i kvazikonformnye otobrazheniya, Nauka, M., 1983 | MR | Zbl

[4] Yu. G. Reshetnyak, “Integralnye predstavleniya differentsiruemykh funktsii v oblastyakh s negladkoi granitsei”, Sib. matem. zhurn., 21:6 (1980), 108–116 | MR | Zbl

[5] O. V. Besov, “Teorema vlozheniya Soboleva dlya oblasti s neregulyarnoi granitsei”, Matem. sb., 192:3 (2001), 3–26 | DOI | MR | Zbl

[6] T. Kilpeläinen, J. Malý, “Sobolev inequalities on sets with irregular boundaries”, Z. Anal. Anwend., 19:2 (2000), 369–380 | DOI | MR | Zbl

[7] D. A. Labutin, “Neuluchshaemost neravenstv Soboleva dlya klassa neregulyarnykh oblastei”, Funktsionalnye prostranstva, garmonicheskii analiz, differentsialnye uravneniya, Tr. MIAN, 232, Nauka, M., 2001, 218–222 | MR | Zbl

[8] D. A. Labutin, “Vlozhenie prostranstv Soboleva na gëlderovykh oblastyakh”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 18, Tr. MIAN, 227, Nauka, M., 1999, 170–179 | MR | Zbl

[9] V. G. Mazya, S. V. Poborchii, “Teoremy vlozheniya prostranstv Soboleva v oblasti s pikom i v gelderovoi oblasti”, Algebra i analiz, 18:4 (2006), 95–126 | MR | Zbl

[10] B. V. Trushin, “Nepreryvnost vlozhenii vesovykh prostranstv Soboleva v prostranstva Lebega na anizotropno neregulyarnykh oblastyakh”, Teoriya funktsii i differentsialnye uravneniya, Tr. MIAN, 269, MAIK, M., 2010, 271–289 | MR | Zbl

[11] B. V. Trushin, “Teoremy vlozheniya Soboleva dlya nekotorogo klassa anizotropnykh neregulyarnykh oblastei”, Teoriya funktsii i nelineinye uravneniya v chastnykh proizvodnykh, Tr. MIAN, 260, MAIK, M., 2008, 297–319 | MR | Zbl

[12] O. V. Besov, “Sobolev's embedding theorem for anisotropically irregular domains”, Eurasian Math. J., 2:1 (2011), 32–51 | MR | Zbl

[13] M. A. Gabidzashvili, “Vesovye neravenstva dlya anizotropnykh potentsialov”, Tr. Tbilisskogo matem. in-ta, 82 (1986), 25–36 | Zbl

[14] V. M. Kokilashvili, M. A. Gabidzashvili, “O vesovykh neravenstvakh dlya anizotropnykh potentsialov i tselykh funktsii”, Dokl. AN SSSR, 282:6 (1985), 1304–1306 | MR | Zbl

[15] O. V. Besov, “Integralnye otsenki differentsiruemykh funktsii na neregulyarnykh oblastyakh”, Matem. sb., 201:12 (2010), 69–82 | DOI | MR | Zbl