Embedding of Sobolev Spaces and Properties of the Domain
Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 343-349

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish the embedding of the Sobolev space $W_p^s(G)\subset L_q(G)$ for an irregular domain $G$ in the case of a limit exponent under new relations between the parameters depending on the geometric properties of the domain $G$.
Keywords: Sobolev space, Sobolev embedding theorem, domain with flexible $\sigma$-cone condition, Hölder's inequality, Marcinkiewicz interpolation theorem.
@article{MZM_2014_96_3_a3,
     author = {O. V. Besov},
     title = {Embedding of {Sobolev} {Spaces} and {Properties} of the {Domain}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {343--349},
     publisher = {mathdoc},
     volume = {96},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a3/}
}
TY  - JOUR
AU  - O. V. Besov
TI  - Embedding of Sobolev Spaces and Properties of the Domain
JO  - Matematičeskie zametki
PY  - 2014
SP  - 343
EP  - 349
VL  - 96
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a3/
LA  - ru
ID  - MZM_2014_96_3_a3
ER  - 
%0 Journal Article
%A O. V. Besov
%T Embedding of Sobolev Spaces and Properties of the Domain
%J Matematičeskie zametki
%D 2014
%P 343-349
%V 96
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a3/
%G ru
%F MZM_2014_96_3_a3
O. V. Besov. Embedding of Sobolev Spaces and Properties of the Domain. Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 343-349. http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a3/