Boundary-Value Problems for a Nonlinear Hyperbolic Equation with Variable Coefficients and the L\'evy Laplacian
Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 440-449.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a nonlinear hyperbolic equation with variable coefficients and the infinite-dimensional Lévy Laplacian $\Delta _L$, $$ \beta\biggl(\sqrt{2}\mspace{2mu}\|x\|_H \frac{\partial U(t,x)}{\partial t}\biggr) \frac{\partial^2U(t,x)}{\partial t^2} +\alpha(U(t,x)) \biggl[\frac{\partial U(t,x)}{\partial t}\biggr]^2 =\Delta_LU(t,x), $$ we present algorithms for the solution of the boundary-value problem $U(0,x)=u_0$, $U(t,0)=u_1$ and the exterior boundary-value problem $U(0,x)=v_0$, $U(t,x)|_\Gamma=v_1$, $\lim_{\|x\|_H\to\infty}U(t,x)=v_2$ for the class of Shilov functions depending on the parameter $t$.
Keywords: nonlinear hyperbolic equation, boundary-value problem, Lévy Laplacian, Shilov function, Hilbert space.
@article{MZM_2014_96_3_a12,
     author = {M. N. Feller},
     title = {Boundary-Value {Problems} for a {Nonlinear} {Hyperbolic} {Equation} with {Variable} {Coefficients} and the {L\'evy} {Laplacian}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {440--449},
     publisher = {mathdoc},
     volume = {96},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a12/}
}
TY  - JOUR
AU  - M. N. Feller
TI  - Boundary-Value Problems for a Nonlinear Hyperbolic Equation with Variable Coefficients and the L\'evy Laplacian
JO  - Matematičeskie zametki
PY  - 2014
SP  - 440
EP  - 449
VL  - 96
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a12/
LA  - ru
ID  - MZM_2014_96_3_a12
ER  - 
%0 Journal Article
%A M. N. Feller
%T Boundary-Value Problems for a Nonlinear Hyperbolic Equation with Variable Coefficients and the L\'evy Laplacian
%J Matematičeskie zametki
%D 2014
%P 440-449
%V 96
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a12/
%G ru
%F MZM_2014_96_3_a12
M. N. Feller. Boundary-Value Problems for a Nonlinear Hyperbolic Equation with Variable Coefficients and the L\'evy Laplacian. Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 440-449. http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a12/

[1] S. A. Albeverio, Ya. I. Belopolskaya, M. N. Feller, “Zadacha Koshi dlya volnovogo uravneniya s laplasianom Levi”, Matem. zametki, 87:6 (2010), 803–813 | DOI | MR | Zbl

[2] M. N. Feller, “Kraevye zadachi dlya volnovogo uravneniya s laplasianom Levi v klasse Gato”, Ukr. matem. zhurn., 61:11 (2009), 1564–1574 | MR | Zbl

[3] S. Albeverio, Ya. I. Belopolskaya, M. N. Feller, “Boundary problems for the wave equation with the Lévy Laplacian in Shilov's class”, Methods Funct. Anal. Topology, 16:3 (2010), 197–202 | MR | Zbl

[4] M. N. Feller, “Kraevye zadachi dlya nelineinogo giperbolicheskogo uravneniya s divergentnoi chastyu i s laplasianom Levi”, Ukr. matem. zhurn., 64:2 (2012), 237–244 | MR | Zbl

[5] I. I. Kovtun, M. N. Feller, “Kraevye zadachi dlya nelineinogo giperbolicheskogo uravneniya s laplasianom Levi”, Ukr. matem. zhurn., 64:11 (2012), 1492–1499

[6] P. Lévy, Problèmes concrets d'analyse fonctionnelle, Gauthier-Villars, Paris, 1951 | MR | Zbl

[7] M. N. Feller, The Lévy Laplacian, Cambridge Tracts in Math., 166, Cambridge Univ. Press, Cambridge, 2005 | MR | Zbl

[8] G. E. Shilov, “O nekotorykh voprosakh analiza v gilbertovom prostranstve, I”, Funkts. analiz i ego pril., 1:2 (1967), 81–90 | MR | Zbl