Properties of Semisimple Hopf Algebras
Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 325-332.

Voir la notice de l'article provenant de la source Math-Net.Ru

Semisimple finite-dimensional Hopf algebras all of whose non-one-dimensional irreducible modules of the same dimension are isomorphic are considered. The one-dimensional submodules of the tensor squares of irreducible modules are indicated and the almost cocommutative Hopf algebras and the left ideal coideals are described.
Keywords: semisimple Hopf algebra, cocommutative Hopf algebra, irreducible module.
@article{MZM_2014_96_3_a1,
     author = {V. A. Artamonov},
     title = {Properties of {Semisimple} {Hopf} {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {325--332},
     publisher = {mathdoc},
     volume = {96},
     number = {3},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a1/}
}
TY  - JOUR
AU  - V. A. Artamonov
TI  - Properties of Semisimple Hopf Algebras
JO  - Matematičeskie zametki
PY  - 2014
SP  - 325
EP  - 332
VL  - 96
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a1/
LA  - ru
ID  - MZM_2014_96_3_a1
ER  - 
%0 Journal Article
%A V. A. Artamonov
%T Properties of Semisimple Hopf Algebras
%J Matematičeskie zametki
%D 2014
%P 325-332
%V 96
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a1/
%G ru
%F MZM_2014_96_3_a1
V. A. Artamonov. Properties of Semisimple Hopf Algebras. Matematičeskie zametki, Tome 96 (2014) no. 3, pp. 325-332. http://geodesic.mathdoc.fr/item/MZM_2014_96_3_a1/

[1] S. Natale, Semisolvability of Semisimple Hopf Algebras of Low Dimension, Mem. Amer. Math. Soc., 186, no. 874, Amer. Math. Soc., Providence, RI, 2007 | DOI | MR | Zbl

[2] B. Huppert, Character Theory of Finite Groups, de Gruyter Exp. Math., 25, Walter de Gruyter, Berlin, 1998 | MR | Zbl

[3] V. A. Artamonov, I. A. Chubarov, “Dual algebras of some semisimple finite dimensional Hopf algebras”, Modules and Comodules, Trends Math., Birkhäuser Verlag, Basel, 2008, 65–85 | MR | Zbl

[4] V. A. Artamonov, I. A. Chubarov, “Properties of some semisimple Hopf algebras”, Algebras, Representations and Applications, Contemp. Math., 483, Amer. Math. Soc., Providence, RI, 2009, 23–36 | MR | Zbl

[5] V. A. Artamonov, “On semisimple Hopf algebras with few representations of dimension greater than one”, Rev. Unión. Mat. Argentina, 51:2 (2010), 91–105 | MR | Zbl

[6] S. Natale, J. Y. Plavnik, “On fusion categories with few irreducible degrees”, Algebra Number Theory, 6:6 (2012), 1171–1197 | MR | Zbl

[7] V. A. Artamonov, “O poluprostykh konechnomernykh algebrakh Khopfa”, Matem. sb., 198:9 (2007), 3–28 | DOI | MR | Zbl

[8] S. Montgomery, Hopf Algebras and Their Actions on Rings, CBMS Regional Conf. Ser. in Math., 82, Amer. Math. Soc., Providence RI, 1993 | MR | Zbl

[9] V. A. Artamonov, R. B. Mukhatov, R. Wisbauer, “On the category of modules over some semisimple bialgebras”, Arabian J. Math., 1:1 (2012), 29–38 | DOI | MR | Zbl