Nonclassical Analog of the Goursat Problem for a Three-Dimensional Equation with Highest Derivative
Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 251-260
Voir la notice de l'article provenant de la source Math-Net.Ru
In the present paper, we study the Goursat problem for a three-dimensional equation with highest derivative of fifth order with $L_p$-coefficients and establish a homeomorphism between certain pairs of Banach spaces by reducing this problem to the equivalent Volterra integral equation.
Keywords:
three-dimensional equation with highest derivative of fifth order, Volterra integral equation, Sobolev space.
Mots-clés : Goursat problem
Mots-clés : Goursat problem
@article{MZM_2014_96_2_a9,
author = {I. G. Mamedov},
title = {Nonclassical {Analog} of the {Goursat} {Problem} for a {Three-Dimensional} {Equation} with {Highest} {Derivative}},
journal = {Matemati\v{c}eskie zametki},
pages = {251--260},
publisher = {mathdoc},
volume = {96},
number = {2},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a9/}
}
TY - JOUR AU - I. G. Mamedov TI - Nonclassical Analog of the Goursat Problem for a Three-Dimensional Equation with Highest Derivative JO - Matematičeskie zametki PY - 2014 SP - 251 EP - 260 VL - 96 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a9/ LA - ru ID - MZM_2014_96_2_a9 ER -
I. G. Mamedov. Nonclassical Analog of the Goursat Problem for a Three-Dimensional Equation with Highest Derivative. Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 251-260. http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a9/