Nonclassical Analog of the Goursat Problem for a Three-Dimensional Equation with Highest Derivative
Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 251-260

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we study the Goursat problem for a three-dimensional equation with highest derivative of fifth order with $L_p$-coefficients and establish a homeomorphism between certain pairs of Banach spaces by reducing this problem to the equivalent Volterra integral equation.
Keywords: three-dimensional equation with highest derivative of fifth order, Volterra integral equation, Sobolev space.
Mots-clés : Goursat problem
@article{MZM_2014_96_2_a9,
     author = {I. G. Mamedov},
     title = {Nonclassical {Analog} of the {Goursat} {Problem} for a {Three-Dimensional} {Equation} with {Highest} {Derivative}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {251--260},
     publisher = {mathdoc},
     volume = {96},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a9/}
}
TY  - JOUR
AU  - I. G. Mamedov
TI  - Nonclassical Analog of the Goursat Problem for a Three-Dimensional Equation with Highest Derivative
JO  - Matematičeskie zametki
PY  - 2014
SP  - 251
EP  - 260
VL  - 96
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a9/
LA  - ru
ID  - MZM_2014_96_2_a9
ER  - 
%0 Journal Article
%A I. G. Mamedov
%T Nonclassical Analog of the Goursat Problem for a Three-Dimensional Equation with Highest Derivative
%J Matematičeskie zametki
%D 2014
%P 251-260
%V 96
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a9/
%G ru
%F MZM_2014_96_2_a9
I. G. Mamedov. Nonclassical Analog of the Goursat Problem for a Three-Dimensional Equation with Highest Derivative. Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 251-260. http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a9/