On the Riesz Constants for Systems of Integer Translates
Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 239-250.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, one-parameter families of integer translates of the Gaussian and Lorentz functions are studied. For a Lorentz function, we obtain formulas for the coefficients of the series defining node functions and show that the limit value of node functions is given by a sample function. For systems of translates generated by the Gaussian and Lorentz functions as well as by the node functions related to them, we obtain explicit expressions for the Riesz constants and study the parameter-dependent behavior of these constants. While proving some of the results of this paper, we establish the monotonicity of a special ratio of two Jacobi theta functions, a fact which is of interest in itself.
Mots-clés : Riesz constant
Keywords: Gaussian function, Lorentz function, system of integer translates, node function, Jacobi theta function, Riesz system.
@article{MZM_2014_96_2_a8,
     author = {E. A. Kiselev and L. A. Minin and I. Ya. Novikov and S. M. Sitnik},
     title = {On the {Riesz} {Constants} for {Systems} of {Integer} {Translates}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {239--250},
     publisher = {mathdoc},
     volume = {96},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a8/}
}
TY  - JOUR
AU  - E. A. Kiselev
AU  - L. A. Minin
AU  - I. Ya. Novikov
AU  - S. M. Sitnik
TI  - On the Riesz Constants for Systems of Integer Translates
JO  - Matematičeskie zametki
PY  - 2014
SP  - 239
EP  - 250
VL  - 96
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a8/
LA  - ru
ID  - MZM_2014_96_2_a8
ER  - 
%0 Journal Article
%A E. A. Kiselev
%A L. A. Minin
%A I. Ya. Novikov
%A S. M. Sitnik
%T On the Riesz Constants for Systems of Integer Translates
%J Matematičeskie zametki
%D 2014
%P 239-250
%V 96
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a8/
%G ru
%F MZM_2014_96_2_a8
E. A. Kiselev; L. A. Minin; I. Ya. Novikov; S. M. Sitnik. On the Riesz Constants for Systems of Integer Translates. Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 239-250. http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a8/

[1] B. C. Kashin, A. A. Saakyan, Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl

[2] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005 | MR | Zbl

[3] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Chislennye metody, Nauka, M., 1987 | MR | Zbl

[4] D. Jankov, T. K. Pogány, “Integral representation of Schlömilch series”, J. Classical Anal., 1:1 (2012), 75–84

[5] Ch. K. Chui, Vvedenie v veivlety, Mir, M., 2001 | MR | Zbl

[6] O. Christensen, An Introduction to Frames and Riesz Bases, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, 2003 | MR | Zbl

[7] A. I. Drobyshev, Osnovy atomnogo spektralnogo analiza, Izd-vo S-Peterburg. un-ta, SPb., 1997

[8] M. V. Zhuravlev, E. A. Kiselev, L. A. Minin, S. M. Sitnik, “Jacobi theta-functions and systems of integer shifted Gaussian functions”, J. Math. Sci. (N. Y.), 173:2 (2011), 231–241 | MR | Zbl

[9] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza. Ch. 2. Transtsendentnye funktsii, GIFML, M., 1963

[10] V. Maz'ya, G. Schmidt, Approximate Approximations, Math. Surveys Monogr., 141, Amer. Math. Soc., Providence, RI, 2007 | MR | Zbl

[11] M. V. Zhuravlev, “O konstantakh Rissa dlya sistem tselochislennykh sdvigov funktsii Gaussa”, Nauchn. vedom. BelGU. Matem. Fiz., 22:5 (100) (2011), 39–46

[12] Th. Schlumprecht, N. Sivakumar, “On the sampling and recovery of bandlimited functions via scattered translates of the Gaussian”, J. Approx. Theory, 159:1 (2009), 128–153 | DOI | MR | Zbl

[13] NIST Handbook of Mathematical Functions, Cambridge Univ. Press, Cambridge, 2010 | MR | Zbl

[14] D. F. Lawden, Elliptic Functions and Applications, Appl. Math. Sci., 80, Springer-Verlag, New York, 1989 | MR | Zbl

[15] M. V. Zhuravlev, L. A. Minin, S. M. Sitnik, “O vychislitelnykh osobennostyakh interpolyatsii s pomoschyu tselochislennykh sdvigov gaussovykh funktsii”, Nauchn. vedom. BelGU. Matem. Fiz., 17/2:13 (68) (2009), 89–99

[16] A. Yu. Solynin, “Garmonicheskaya mera radialnykh otrezkov i simmetrizatsiya”, Matem. sb., 189:11 (1998), 121–138 | DOI | MR | Zbl

[17] A. Dixit, A. Roy, A. Zaharescu, “Convexity of quotients of theta functions”, J. Math. Anal. Appl., 386:1 (2012), 319–331 | MR | Zbl

[18] K. Schiefermayr, Some New Properties of Jacobi's Theta Functions, 2013, arXiv: math.CV/1306.6220v1