On the Arithmetic Triangle Arising from the Solvability Conditions for the Neumann Problem
Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 228-238.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the arithmetic triangle arising from the solvability conditions for the Neumann problem for the polyharmonic equation in the unit ball. Recurrence relations for the elements of this triangle are obtained.
Keywords: Neumann problem, arithmetic triangle, Vandermond determinant.
Mots-clés : polyharmonic equation
@article{MZM_2014_96_2_a7,
     author = {V. V. Karachik},
     title = {On the {Arithmetic} {Triangle} {Arising} from the {Solvability} {Conditions} for the {Neumann} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {228--238},
     publisher = {mathdoc},
     volume = {96},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a7/}
}
TY  - JOUR
AU  - V. V. Karachik
TI  - On the Arithmetic Triangle Arising from the Solvability Conditions for the Neumann Problem
JO  - Matematičeskie zametki
PY  - 2014
SP  - 228
EP  - 238
VL  - 96
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a7/
LA  - ru
ID  - MZM_2014_96_2_a7
ER  - 
%0 Journal Article
%A V. V. Karachik
%T On the Arithmetic Triangle Arising from the Solvability Conditions for the Neumann Problem
%J Matematičeskie zametki
%D 2014
%P 228-238
%V 96
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a7/
%G ru
%F MZM_2014_96_2_a7
V. V. Karachik. On the Arithmetic Triangle Arising from the Solvability Conditions for the Neumann Problem. Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 228-238. http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a7/

[1] A. V. Bitsadze, “O nekotorykh svoistvakh poligapmonicheskikh funktsii”, Differents. uravneniya, 24:5 (1988), 825–831 | MR | Zbl

[2] V. V. Karachik, “Ob odnoi zadache dlya poligapmonicheskogo upavneniya v shape”, Sib. matem. zhupn., 32:55 (1991), 51–58 | Zbl

[3] A. V. Bitsadze, Uravneniya matematicheskoi fiziki, Nauka, M., 1976 | MR

[4] B. A. Bondarenko, Obobschennye treugolniki i piramidy Paskalya, ikh fraktali, grafy i prilozheniya, Fan, Tashkent, 1990

[5] V. V. Karachik, “On some special polynomials”, Proc. Amer. Math. Soc., 132:4 (2004), 1049–1058 | DOI | MR | Zbl

[6] B. A Bondarenko, V. V. Karachik, R. B. Tulyaganov, “Distribution of Eulerian and Stirling numbers $\operatorname{mod} p$ in arithmetical triangles”, Voprosy vychislitelnoi i ppikladnoi matematiki, 102, Izd-vo AN RUz, Tashkent, 1996, 133–140 | MR | Zbl

[7] V. V. Karachik, “$P$-Latin matrices and Pascal's triangle modulo a prime”, Fibonacci Quart., 34:4 (1996), 362–372 | MR | Zbl

[8] V. V. Karachik, “Polinomialnye resheniya zadachi Dirikhle dlya $3$-garmonicheskogo uravneniya v share”, Zhurn. SFU. Ser. Matem. i fiz., 5:4 (2012), 527–546