$(n+1)$-ary Derivations of Semisimple Filippov algebras
Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 217-227

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of generalized and $(n+1)$-ary derivations of simple and semisimple finite-dimensional Filippov algebras over an algebraically closed field of characteristic zero is described. An example of a semisimple ternary Maltsev algebra is given which is not a Filippov algebra and admits a nontrivial $4$-ary derivation.
Keywords: $n+1$-ary derivation, semisimple Filippov algebra, simple finite-dimensional Filippov algebra, ternary Maltsev algebra.
@article{MZM_2014_96_2_a6,
     author = {I. B. Kaygorodov},
     title = {$(n+1)$-ary {Derivations} of {Semisimple} {Filippov} algebras},
     journal = {Matemati\v{c}eskie zametki},
     pages = {217--227},
     publisher = {mathdoc},
     volume = {96},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a6/}
}
TY  - JOUR
AU  - I. B. Kaygorodov
TI  - $(n+1)$-ary Derivations of Semisimple Filippov algebras
JO  - Matematičeskie zametki
PY  - 2014
SP  - 217
EP  - 227
VL  - 96
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a6/
LA  - ru
ID  - MZM_2014_96_2_a6
ER  - 
%0 Journal Article
%A I. B. Kaygorodov
%T $(n+1)$-ary Derivations of Semisimple Filippov algebras
%J Matematičeskie zametki
%D 2014
%P 217-227
%V 96
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a6/
%G ru
%F MZM_2014_96_2_a6
I. B. Kaygorodov. $(n+1)$-ary Derivations of Semisimple Filippov algebras. Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 217-227. http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a6/