$(n+1)$-ary Derivations of Semisimple Filippov algebras
Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 217-227.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of generalized and $(n+1)$-ary derivations of simple and semisimple finite-dimensional Filippov algebras over an algebraically closed field of characteristic zero is described. An example of a semisimple ternary Maltsev algebra is given which is not a Filippov algebra and admits a nontrivial $4$-ary derivation.
Keywords: $n+1$-ary derivation, semisimple Filippov algebra, simple finite-dimensional Filippov algebra, ternary Maltsev algebra.
@article{MZM_2014_96_2_a6,
     author = {I. B. Kaygorodov},
     title = {$(n+1)$-ary {Derivations} of {Semisimple} {Filippov} algebras},
     journal = {Matemati\v{c}eskie zametki},
     pages = {217--227},
     publisher = {mathdoc},
     volume = {96},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a6/}
}
TY  - JOUR
AU  - I. B. Kaygorodov
TI  - $(n+1)$-ary Derivations of Semisimple Filippov algebras
JO  - Matematičeskie zametki
PY  - 2014
SP  - 217
EP  - 227
VL  - 96
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a6/
LA  - ru
ID  - MZM_2014_96_2_a6
ER  - 
%0 Journal Article
%A I. B. Kaygorodov
%T $(n+1)$-ary Derivations of Semisimple Filippov algebras
%J Matematičeskie zametki
%D 2014
%P 217-227
%V 96
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a6/
%G ru
%F MZM_2014_96_2_a6
I. B. Kaygorodov. $(n+1)$-ary Derivations of Semisimple Filippov algebras. Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 217-227. http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a6/

[1] V. T. Filippov, “O $\delta$-differentsirovaniyakh algebr Li”, Sib. matem. zhurn., 39:6 (1998), 1409–1422 | MR | Zbl

[2] V. T. Filippov, “$\delta$-Differentsirovaniya pervichnykh algebr Li”, Sib. matem. zhurn., 40:1 (1999), 201–213 | MR | Zbl

[3] V. T. Filippov, “O $\delta$-differentsirovaniyakh pervichnykh alternativnykh i maltsevskikh algebr”, Algebra i logika, 39:5 (2000), 618–625 | MR | Zbl

[4] P. Zusmanovich, “On $\delta$-derivations of Lie algebras and superalgebras”, J. Algebra, 324:12 (2010), 3470–3486 | DOI | MR | Zbl

[5] I. B. Kaigorodov, “O $\delta$-differentsirovaniyakh prostykh konechnomernykh iordanovykh superalgebr”, Algebra i logika, 46:5 (2007), 585–605 | MR | Zbl

[6] I. B. Kaigorodov, “O $\delta$-differentsirovaniyakh klassicheskikh superalgebr Li”, Sib. matem. zhurn., 50:3 (2009), 547–565 | MR | Zbl

[7] I. B. Kaigorodov, “O $\delta$-superdifferentsirovaniyakh prostykh konechnomernykh iordanovykh i lievykh superalgebr”, Algebra i logika, 49:2 (2010), 195–215 | MR | Zbl

[8] V. N. Zhelyabin, I. B. Kaigorodov, “O $\delta$-superdifferentsirovaniyakh prostykh superalgebr iordanovykh skobok”, Algebra i analiz, 23:4 (2011), 40–58 | MR | Zbl

[9] I. B. Kaigorodov, “Ob obobschennom duble Kantora”, Vestn. SamGU. Estestvennonauchn. ser., 2010, no. 4 (78), 42–50

[10] I. B. Kaigorodov, “O $\delta$-superdifferentsirovaniyakh poluprostykh konechnomernykh iordanovykh superalgebr”, Matem. zametki, 91:2 (2012), 200–213 | DOI | Zbl

[11] I. B. Kaigorodov, “O $\delta$-differentsirovaniyakh $n$-arnykh algebr”, Izv. RAN. Ser. matem., 76:6 (2012), 81–94 | DOI | MR | Zbl

[12] I. B. Kaigorodov, “Ob obobschennykh $\delta$-differentsirovaniyakh”, Vestn. SamGU. Estestvennonauchn. ser., 9/1 (110) (2013), 20–29

[13] I. Kaygorodov, E. Okhapkina, “$\delta$-derivations of semisimple structurable algebras”, J. Algebra Appl., 13:4 (2014), 1350130 | DOI | MR | Zbl

[14] I. Kaygorodov, “$\delta$-derivations of algebras and superalgebras”, Proceedings of the International Conference on Algebra 2010, World Sci. Publ., Hackensack, NJ, 2012, 374–380 | MR

[15] P. Novotný, J. Hrivnák, “On $(\alpha,\beta,\gamma)$-derivations of Lie algebras and corresponding invariant functions”, J. Geom. Phys., 58:2 (2008), 208–217 | DOI | MR | Zbl

[16] K. Zheng, Y. Zhang, “On $(\alpha,\beta,\gamma)$-derivations of Lie superalgebras”, Int. J. Geom. Methods Mod. Phys., 10:2 (2013), 1–18 | MR

[17] G. Leger, E. Luks, “Generalized derivations of Lie algebras”, J. Algebra, 228:1 (2000), 165–203 | DOI | MR | Zbl

[18] R. Zhang, Y. Zhang, “Generalized derivations of Lie superalgebras”, Comm. Algebra, 38:10 (2010), 3737–3751 | DOI | MR | Zbl

[19] H. Komatsu, A. Nakajima, “Generalized derivations of associative algebras”, Quaest. Math., 26:2 (2003), 213–235 | DOI | MR | Zbl

[20] H. Komatsu, A. Nakajima, “Generalized derivations with invertible values”, Comm. Algebra, 32:5 (2004), 1937–1944 | DOI | MR | Zbl

[21] C. Jiménez-Gestal, J. M. Pérez-Izquierdo, “Ternary derivations of generalized Cayley–Dickson algebras”, Comm. Algebra, 31:10 (2003), 5071–5094 | DOI | MR | Zbl

[22] C. Jiménez-Gestal, J. M. Pérez-Izquierdo, “Ternary derivations of finite-dimensional real division algebras”, Linear Algebra Appl., 428:8-9 (2008), 2192–2219 | DOI | MR | Zbl

[23] J. M. Perez-Izquierdo, “Unital algebras, ternary derivations, and local triality”, Algebras, Representations and Applications, Contemp. Math., 483, Amer. Math. Soc., Providence, RI, 2009, 205–220 | MR | Zbl

[24] A. I. Shestakov, “Ternarnye differentsirovaniya separabelnykh assotsiativnykh i iordanovykh algebr”, Sib. matem. zhurn., 53:5 (2012), 1178–1195 | MR | Zbl

[25] A. I. Shestakov, “Ternarnye differentsirovaniya iordanovykh superalgebr”, Algebra i logika, 53:1 (2014) (to appear)

[26] I. B. Kaigorodov, “Ob $(n+1)$-arnykh differentsirovaniyakh prostykh $n$-arnykh algebr Maltseva”, Algebra i analiz, 25:4 (2013), 85–100 | MR

[27] V. T. Filippov, “$n$-Lievy algebry”, Sib. matem. zhurn., 26:6 (1985), 126–140 | MR | Zbl

[28] A. P. Pozhidaev, “$n$-arnye algebry Maltseva”, Algebra i logika, 40:3 (2001), 309–329 | MR | Zbl

[29] Y. Nambu, “Generalized Hamiltonian mechanics”, Phys. Rev. D (3), 7 (1973), 2405–2412 | MR | Zbl

[30] J. A. de Azcarraga, J. M. Izquierdo, “$n$-ary algebras: a review with applications”, J. Phys. A. Math. Theor., 43 (2010), 293001 | DOI | Zbl

[31] N. G. Pletnev, “Filippov-Nambu $n$-algebras relevant to physics”, Sib. elektron. matem. izv., 6 (2009), 272–311 | MR

[32] I. B. Kaigorodov, “$(n+1)$-arnye differentsirovaniya prostykh $n$-arnykh algebr”, Algebra i logika, 50:5 (2011), 689–691 | MR | Zbl

[33] W. Ling, On Structure of $n$-Lie Algebras, Thesis, Universität Siegen, Siegen, 1993