Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_96_2_a5, author = {A. O. Ignatyev}, title = {Using an {Analog} of the {Lyapunov} {Function} with {Sign-Alternating} {Derivative} in the {Study} of {Global} {Asymptotic} {Stability} of {Equilibria}}, journal = {Matemati\v{c}eskie zametki}, pages = {212--216}, publisher = {mathdoc}, volume = {96}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a5/} }
TY - JOUR AU - A. O. Ignatyev TI - Using an Analog of the Lyapunov Function with Sign-Alternating Derivative in the Study of Global Asymptotic Stability of Equilibria JO - Matematičeskie zametki PY - 2014 SP - 212 EP - 216 VL - 96 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a5/ LA - ru ID - MZM_2014_96_2_a5 ER -
%0 Journal Article %A A. O. Ignatyev %T Using an Analog of the Lyapunov Function with Sign-Alternating Derivative in the Study of Global Asymptotic Stability of Equilibria %J Matematičeskie zametki %D 2014 %P 212-216 %V 96 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a5/ %G ru %F MZM_2014_96_2_a5
A. O. Ignatyev. Using an Analog of the Lyapunov Function with Sign-Alternating Derivative in the Study of Global Asymptotic Stability of Equilibria. Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 212-216. http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a5/
[1] N. N. Barbashin, E. A. Krasovskii, “Ob ustoichivosti dvizheniya v tselom”, Dokl. AN SSSR, 86:6 (1952), 453–456 | Zbl
[2] N. N. Krasovskii, Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959 | MR | Zbl
[3] A. O. Ignatev, “Nekotorye obobscheniya teoremy Barbashina–Krasovskogo”, Matem. fizika, 34 (1983), 19–22 | MR
[4] A. O. Ignatev, “Ob ustoichivosti pochti periodicheskikh sistem otnositelno chasti peremennykh”, Differents. uravneniya, 25:8 (1989), 1446–1448 | MR | Zbl
[5] A. O. Ignatyev, “On the stability of equilibrium for almost periodic systems”, Nonlinear Anal. Theory Methods Appl., 29:8 (1997), 957–962 | DOI | MR | Zbl
[6] A. O. Ignatyev, “On the asymptotic stability in functional differential equations”, Proc. Amer. Math. Soc., 127:6 (1999), 1753–1760 | DOI | MR | Zbl
[7] A. O. Ignatyev, “On the partial equiasymptotic stability in functional differential equations”, J. Math. Anal. Appl., 268:2 (2002), 615–628 | DOI | MR | Zbl
[8] A. S. Andreev, “Ob asimptoticheskoi ustoichivosti i neustoichivosti nulevogo resheniya neavtonomnogo funktsionalno-differentsialnogo uravneniya”, Problemy analiticheskoi mekhaniki, ustoichivosti i upravleniya dvizheniem, Nauka, Novosibirsk, 1991
[9] A. S. Andreev, Ustoichivost neavtonomnykh funktsionalno-differentsialnykh uravnenii, Izd-vo UlGU, Ulyanovsk, 2005
[10] S. V. Pavlikov, “Predelnye uravneniya i funktsionaly Lyapunova v zadache ob ustoichivosti po chasti peremennykh”, Uch. zap. Ulyanovsk. gos. un-ta. Ser. Fundament. probl. matem. i mekh., 1:13 (2003), 63–74
[11] S. V. Pavlikov, Metod funktsionalov Lyapunova v zadachakh ustoichivosti, Institut upravleniya, Naberezhnye Chelny, 2006
[12] A. S. Andreev, “Metod funktsionalov Lyapunova v zadache ob ustoichivosti funktsionalno-differentsialnykh uravnenii”, Avtomat. i telemekh., 2009, no. 9, 4–55 | MR | Zbl
[13] O. A. Ignatyev, V. Madrekar, “Barbashin–Krasovskii theorem for stochastic differential equations”, Proc. Amer. Math. Soc., 138:11 (2010), 4123–4128 | DOI | MR | Zbl
[14] E. L. Panasenko, E. A. Tonkov, “Rasprostranenie teorem E. A. Barbashina i N. N. Krasovskogo ob ustoichivosti na upravlyaemye dinamicheskie sistemy”, Tr. IMM UrO RAN, 15, no. 3, 2009, 185–201
[15] G.-Q. Xu, S. P. Yung, “Lyapunov stability of abstract nonlinear dynamic system in Banach space”, IMA J. Math. Control Inform., 20:1 (2003), 105–127 | DOI | MR | Zbl
[16] O. A. Ignat'ev, “On equiasymptotic stability with respect to part of the variables”, J. Appl. Math. Mech., 63:5 (1999), 821–824 | DOI | MR | Zbl