Hadamard Algebras
Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 207-211.

Voir la notice de l'article provenant de la source Math-Net.Ru

The existence problem for Hadamard decompositions in semisimple associative finite-dimensional complex algebras is studied. Under the assumption that the well-known hypothesis of the Hadamard matrices is satisfied, this problem is completely solved for algebras isomorphic to the direct sum of a matrix algebra of order 2 and a semisimple commutative algebra.
Mots-clés : Hadamard matrix, Hadamard decomposition, Hadamard algebra.
@article{MZM_2014_96_2_a4,
     author = {D. N. Ivanov},
     title = {Hadamard {Algebras}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {207--211},
     publisher = {mathdoc},
     volume = {96},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a4/}
}
TY  - JOUR
AU  - D. N. Ivanov
TI  - Hadamard Algebras
JO  - Matematičeskie zametki
PY  - 2014
SP  - 207
EP  - 211
VL  - 96
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a4/
LA  - ru
ID  - MZM_2014_96_2_a4
ER  - 
%0 Journal Article
%A D. N. Ivanov
%T Hadamard Algebras
%J Matematičeskie zametki
%D 2014
%P 207-211
%V 96
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a4/
%G ru
%F MZM_2014_96_2_a4
D. N. Ivanov. Hadamard Algebras. Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 207-211. http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a4/

[1] M. Kholl, Kombinatorika, Mir, M., 1970 | MR | Zbl

[2] D. N. Ivanov, “Ortogonalnye razlozheniya assotsiativnykh algebr i sbalansirovannye sistemy idempotentov”, Matem. sb., 189:12 (1998), 83–102 | DOI | MR | Zbl

[3] D. N. Ivanov, “Odnorodnye ortogonalnye razlozheniya kommutativnykh algebr i matritsy Adamara”, Fundament. i prikl. matem., 1:4 (1995), 1107–1110 | MR | Zbl

[4] D. N. Ivanov, “Razmernost adamarovoi algebry delitsya na 4”, UMN, 60:2 (2005), 163–164 | DOI | MR | Zbl

[5] D. N. Ivanov, “Adamarovy algebry s edinstvennoi nekommutativnoi prostoi komponentoi”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2011, no. 5, 46–48 | MR

[6] A. I. Kostrikin, I. A. Kostrikin, V. A. Ufnarovskii, “Ortogonalnye razlozheniya prostykh algebr Li (tip $A_n$)”, Analiticheskaya teoriya chisel, matematicheskii analiz i ikh prilozheniya, Tr. MIAN SSSR, 158, 1981, 105–120 | MR | Zbl