Asymptotic Behavior of the Capacity of a Condenser as Some of Its Plates Contract to Points
Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 194-206.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the first two terms in the asymptotic formula for the capacity of a generalized condenser are independent of the shape of degenerating plates. An earlier formula was given only for the case in which the degenerating plates are elements of families of almost disks with fixed centers.
Keywords: capacity of a generalized condenser, condenser with degenerating plates, Green function, Robin function.
@article{MZM_2014_96_2_a3,
     author = {V. N. Dubinin},
     title = {Asymptotic {Behavior} of the {Capacity} of a {Condenser} as {Some} of {Its} {Plates} {Contract} to {Points}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {194--206},
     publisher = {mathdoc},
     volume = {96},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a3/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Asymptotic Behavior of the Capacity of a Condenser as Some of Its Plates Contract to Points
JO  - Matematičeskie zametki
PY  - 2014
SP  - 194
EP  - 206
VL  - 96
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a3/
LA  - ru
ID  - MZM_2014_96_2_a3
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Asymptotic Behavior of the Capacity of a Condenser as Some of Its Plates Contract to Points
%J Matematičeskie zametki
%D 2014
%P 194-206
%V 96
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a3/
%G ru
%F MZM_2014_96_2_a3
V. N. Dubinin. Asymptotic Behavior of the Capacity of a Condenser as Some of Its Plates Contract to Points. Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 194-206. http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a3/

[1] G. Polia, G. Sege, Izoperimetricheskie neravenstva v matematicheskoi fizike, Fizmatlit, M., 1962 | MR | Zbl

[2] V. N. Dubinin, “Simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo”, UMN, 49:1 (1994), 3–76 | MR | Zbl

[3] R. Kühnau, “Randeffecte beim elektostatischen Kondensator”, Analiticheskaya teoriya chisel i teoriya funktsii. 15, Zap. nauchn. sem. POMI, 254, POMI, SPb., 1998, 132–144 | MR | Zbl

[4] V. N. Dubinin, D. Karp, “Capacities of certain plane condensers and sets under simple geometric transformations”, Complex Var. Elliptic Equ., 53:6 (2008), 607–622 | DOI | MR | Zbl

[5] S. R. Nasyrov, “Variatsii emkostei Robena i ikh prilozheniya”, Sib. matem. zhurn., 49:5 (2008), 1128–1146 | MR

[6] V. N. Dubinin, M. Vuorinen, “On conformal moduli of polygonal quadrilaterals”, Israel J. Math., 171:1 (2009), 111–125 | DOI | MR | Zbl

[7] V. V. Aseev, “Vypukloe razdutie plastin kondensatora”, Izv. vuzov. Matem., 2010, no. 8, 3–15 | MR

[8] S. Pouliasis, “Condenser energy under holomorphic motions”, Illinois J. Math., 55:3 (2011), 1119–1134 | MR | Zbl

[9] V. N. Dubinin, “Asimptotika modulya vyrozhdayuschegosya kondensatora i nekotorye ee primeneniya”, Analiticheskaya teoriya chisel i teoriya funktsii. 14, Zap. nauchn. sem. POMI, 237, POMI, SPb., 1997, 56–73 | MR | Zbl

[10] V. N. Dubinin, “Privedennye moduli otkrytykh mnozhestv v teorii analiticheskikh funktsii”, Dokl. RAN, 363:6 (1998), 731–734 | MR | Zbl

[11] V. N. Dubinin, L. V. Kovalev, “Privedennyi modul kompleksnoi sfery”, Analiticheskaya teoriya chisel i teoriya funktsii. 15, Zap. nauchn. sem. POMI, 254, POMI, SPb., 1998, 76–94 | MR | Zbl

[12] V. N. Dubinin, “Obobschennye kondensatory i asimptotika ikh emkostei pri vyrozhdenii nekotorykh plastin”, Analiticheskaya teoriya chisel i teoriya funktsii. 19, Zap. nauchn. sem. POMI, 302, POMI, SPb., 2003, 38–51 | MR | Zbl

[13] V. N. Dubinin, N. V. Eirikh, “Nekotorye primeneniya obobschennykh kondensatorov v teorii analiticheskikh funktsii”, Analiticheskaya teoriya chisel i teoriya funktsii. 20, Zap. nauchn. sem. POMI, 314, POMI, SPb., 2004, 52–75 | MR | Zbl

[14] V. N. Dubinin, “O kvadratichnykh formakh, porozhdennykh funktsiyami Grina i Robena”, Matem. sb., 200:10 (2009), 25–38 | DOI | MR | Zbl

[15] V. N. Dubinin, Emkosti kondensatorov i simmetrizatsiya v geometricheskoi teorii funktsii kompleksnogo peremennogo, Dalnauka, Vladivostok, 2009

[16] V. N. Dubinin, “Simmetrizatsiya Shteinera i nachalnye koeffitsienty odnolistnykh funktsii”, Izv. RAN. Ser. matem., 74:4 (2010), 75–82 | DOI | MR | Zbl

[17] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR | Zbl

[18] O. A. Lazareva, Emkostnye svoistva ravnomerno sovershennykh mnozhestv i kondensatorov. Klassicheskie rezultaty i novye issledovaniya, LAP Lambert Academic Publ., 2012

[19] Dzh. Dzhenkins, Odnolistnye funktsii i konformnye otobrazheniya, IL, M., 1962 | Zbl

[20] E. Netanyahu, “Extremal problems for schlicht functions in the exterior of the unit circle”, Canad. J. Math., 17 (1965), 335–341 | DOI | MR | Zbl

[21] P. Duren, “Robin capacity”, Computational methods and Function Theory, Ser. Approx. Decompos., 11, World Sci. Publ., River Edge, NJ, 1999, 177–190 | MR | Zbl