Construction of Nonconvertible $(0,1)$ Matrices
Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 186-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, the existence problem for nonconvertible $(0,1)$ matrices is solved completely. A similar result is obtained for the set of symmetric $(0,1)$-matrices.
Keywords: determinant, nonconvertible $(0,1)$-matrix.
Mots-clés : permanent
@article{MZM_2014_96_2_a2,
     author = {M. V. Budrevich},
     title = {Construction of {Nonconvertible} $(0,1)$ {Matrices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {186--193},
     publisher = {mathdoc},
     volume = {96},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a2/}
}
TY  - JOUR
AU  - M. V. Budrevich
TI  - Construction of Nonconvertible $(0,1)$ Matrices
JO  - Matematičeskie zametki
PY  - 2014
SP  - 186
EP  - 193
VL  - 96
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a2/
LA  - ru
ID  - MZM_2014_96_2_a2
ER  - 
%0 Journal Article
%A M. V. Budrevich
%T Construction of Nonconvertible $(0,1)$ Matrices
%J Matematičeskie zametki
%D 2014
%P 186-193
%V 96
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a2/
%G ru
%F MZM_2014_96_2_a2
M. V. Budrevich. Construction of Nonconvertible $(0,1)$ Matrices. Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 186-193. http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a2/

[1] G. Dolinar, A. E. Guterman, B. Kuzma, “Barery Gibsona dlya problemy Polia”, Fundament. i prikl. matem., 16:8 (2010), 73–86 | MR

[2] A. E. Guterman, G. Dolinar, B. Kuzma, “Problema Polia o konvertiruemosti dlya simmetricheskikh matrits”, Matem. zametki, 92:5 (2012), 684–698 | DOI | Zbl

[3] Kh. Mink, Permanenty, Mir, M., 1982 | MR

[4] L. G. Valiant, “The complexity of computing the permanent”, Theoret. Comput. Sci., 8:2 (1979), 189–201 | DOI | MR | Zbl

[5] G. Polya, “Aufgabe 424”, Arch. der Math. u. Phys. (3), 20 (1913), 271

[6] G. Szegö, “Lösung zu 424”, Arch. der Math. u. Phys. (3), 21 (1913), 291–292

[7] P. M. Gibson, “Conversion of the permanent into the determinant”, Proc. Amer. Math. Soc., 27 (1971), 471–476 | DOI | MR | Zbl

[8] V. E. Tarakanov, R. A. Zatorskii, “O svyazi determinantov s permanentami”, Matem. zametki, 85:2 (2009), 292–299 | DOI | MR | Zbl

[9] C. H. C. Little, “A characterization of convertible $(0,1)$-matrices”, J. Combin. Theory. Ser. B, 18:3 (1975), 187–208 | DOI | MR | Zbl