On the Existence of Solutions of the First Boundary-Value Problem for Elliptic Systems of High Order in Unbounded Domains
Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 310-313
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
elliptic system, first boundary-value problem, divergence operator.
@article{MZM_2014_96_2_a15,
author = {A. L. Beklaryan},
title = {On the {Existence} of {Solutions} of the {First} {Boundary-Value} {Problem} for {Elliptic} {Systems} of {High} {Order} in {Unbounded} {Domains}},
journal = {Matemati\v{c}eskie zametki},
pages = {310--313},
year = {2014},
volume = {96},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a15/}
}
TY - JOUR AU - A. L. Beklaryan TI - On the Existence of Solutions of the First Boundary-Value Problem for Elliptic Systems of High Order in Unbounded Domains JO - Matematičeskie zametki PY - 2014 SP - 310 EP - 313 VL - 96 IS - 2 UR - http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a15/ LA - ru ID - MZM_2014_96_2_a15 ER -
A. L. Beklaryan. On the Existence of Solutions of the First Boundary-Value Problem for Elliptic Systems of High Order in Unbounded Domains. Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 310-313. http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a15/
[1] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR | Zbl
[2] V. G. Mazya, Prostranstva S. L. Soboleva, Izd-vo Leningradsk. un-ta, L., 1985 | MR | Zbl
[3] V. A. Kondratev, Tr. MMO, 16, Izd-vo Mosk. un-ta, M., 1967, 293–318 | MR | Zbl
[4] A. A. Konkov, Matem. sb., 184:12 (1993), 23–52 | MR | Zbl
[5] V. G. Mazya, S. V. Poborchii, Problemy matem. analiza, 53 (2011), 95–112 | MR | Zbl