Representation of Real Normal $(T+H)$ Matrices in the Case where the Skew-Symmetric Parts of Both Summands are Circulant Matrices
Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 294-305
Voir la notice de l'article provenant de la source Math-Net.Ru
We give a description of a particular case of normal matrices expressible as the sum of real Toeplitz and Hankel matrices.
Mots-clés :
normal $(T+H)$ matrix, circulant matrix
Keywords: Toeplitz matrix, Hankel matrix, lower-triangular matrix.
Keywords: Toeplitz matrix, Hankel matrix, lower-triangular matrix.
@article{MZM_2014_96_2_a13,
author = {V. N. Chugunov},
title = {Representation of {Real} {Normal} $(T+H)$ {Matrices} in the {Case} where the {Skew-Symmetric} {Parts} of {Both} {Summands} are {Circulant} {Matrices}},
journal = {Matemati\v{c}eskie zametki},
pages = {294--305},
publisher = {mathdoc},
volume = {96},
number = {2},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a13/}
}
TY - JOUR AU - V. N. Chugunov TI - Representation of Real Normal $(T+H)$ Matrices in the Case where the Skew-Symmetric Parts of Both Summands are Circulant Matrices JO - Matematičeskie zametki PY - 2014 SP - 294 EP - 305 VL - 96 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a13/ LA - ru ID - MZM_2014_96_2_a13 ER -
%0 Journal Article %A V. N. Chugunov %T Representation of Real Normal $(T+H)$ Matrices in the Case where the Skew-Symmetric Parts of Both Summands are Circulant Matrices %J Matematičeskie zametki %D 2014 %P 294-305 %V 96 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a13/ %G ru %F MZM_2014_96_2_a13
V. N. Chugunov. Representation of Real Normal $(T+H)$ Matrices in the Case where the Skew-Symmetric Parts of Both Summands are Circulant Matrices. Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 294-305. http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a13/