Representation of Real Normal $(T+H)$ Matrices in the Case where the Skew-Symmetric Parts of Both Summands are Circulant Matrices
Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 294-305

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a description of a particular case of normal matrices expressible as the sum of real Toeplitz and Hankel matrices.
Mots-clés : normal $(T+H)$ matrix, circulant matrix
Keywords: Toeplitz matrix, Hankel matrix, lower-triangular matrix.
@article{MZM_2014_96_2_a13,
     author = {V. N. Chugunov},
     title = {Representation of {Real} {Normal} $(T+H)$ {Matrices} in the {Case} where the {Skew-Symmetric} {Parts} of {Both} {Summands} are {Circulant} {Matrices}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {294--305},
     publisher = {mathdoc},
     volume = {96},
     number = {2},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a13/}
}
TY  - JOUR
AU  - V. N. Chugunov
TI  - Representation of Real Normal $(T+H)$ Matrices in the Case where the Skew-Symmetric Parts of Both Summands are Circulant Matrices
JO  - Matematičeskie zametki
PY  - 2014
SP  - 294
EP  - 305
VL  - 96
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a13/
LA  - ru
ID  - MZM_2014_96_2_a13
ER  - 
%0 Journal Article
%A V. N. Chugunov
%T Representation of Real Normal $(T+H)$ Matrices in the Case where the Skew-Symmetric Parts of Both Summands are Circulant Matrices
%J Matematičeskie zametki
%D 2014
%P 294-305
%V 96
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a13/
%G ru
%F MZM_2014_96_2_a13
V. N. Chugunov. Representation of Real Normal $(T+H)$ Matrices in the Case where the Skew-Symmetric Parts of Both Summands are Circulant Matrices. Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 294-305. http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a13/