Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_96_2_a13, author = {V. N. Chugunov}, title = {Representation of {Real} {Normal} $(T+H)$ {Matrices} in the {Case} where the {Skew-Symmetric} {Parts} of {Both} {Summands} are {Circulant} {Matrices}}, journal = {Matemati\v{c}eskie zametki}, pages = {294--305}, publisher = {mathdoc}, volume = {96}, number = {2}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a13/} }
TY - JOUR AU - V. N. Chugunov TI - Representation of Real Normal $(T+H)$ Matrices in the Case where the Skew-Symmetric Parts of Both Summands are Circulant Matrices JO - Matematičeskie zametki PY - 2014 SP - 294 EP - 305 VL - 96 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a13/ LA - ru ID - MZM_2014_96_2_a13 ER -
%0 Journal Article %A V. N. Chugunov %T Representation of Real Normal $(T+H)$ Matrices in the Case where the Skew-Symmetric Parts of Both Summands are Circulant Matrices %J Matematičeskie zametki %D 2014 %P 294-305 %V 96 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a13/ %G ru %F MZM_2014_96_2_a13
V. N. Chugunov. Representation of Real Normal $(T+H)$ Matrices in the Case where the Skew-Symmetric Parts of Both Summands are Circulant Matrices. Matematičeskie zametki, Tome 96 (2014) no. 2, pp. 294-305. http://geodesic.mathdoc.fr/item/MZM_2014_96_2_a13/
[1] V. V. Voevodin, E. E. Tyrtyshnikov, Vychislitelnye protsessy s teplitsevymi matritsami, Nauka, M., 1987 | MR | Zbl
[2] R. Khorn, Ch. Dzhonson, Matrichnyi analiz, Mir, M., 1989 | MR | Zbl
[3] V. N. Chugunov, “O chastnykh resheniyakh normalnoi $T+H$-zadachi”, Zh. vychisl. matem. i matem. fiz., 50:4 (2010), 612–617 | MR
[4] V. N. Chugunov, “O parametrizatsii klassov normalnykh gankelevykh matrits”, Zh. vychisl. matem. i matem. fiz., 51:11 (2011), 1939–1951 | MR | Zbl
[5] V. N. Chugunov, “O kososimmetrichnoi chasti teplitsevogo slagaemogo v veschestvennoi normalnoi $T+H$-zadache”, Zh. vychisl. matem. i matem. fiz., 52:2 (2012), 209–213 | MR | Zbl