The Normal Derivative Lemma for the Laplacian on a Polyhedral Set
Matematičeskie zametki, Tome 96 (2014) no. 1, pp. 116-125
Voir la notice de l'article provenant de la source Math-Net.Ru
An analog of the Oleinik–Hopf normal derivative lemma for the Laplace operator on a polyhedral set is considered.
Keywords:
normal derivative, polyhedral set, stratified set, Laplace operator, simplicial complex.
@article{MZM_2014_96_1_a9,
author = {S. N. Oshchepkova and O. M. Penkin and D. Savasteev},
title = {The {Normal} {Derivative} {Lemma} for the {Laplacian} on a {Polyhedral} {Set}},
journal = {Matemati\v{c}eskie zametki},
pages = {116--125},
publisher = {mathdoc},
volume = {96},
number = {1},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a9/}
}
TY - JOUR AU - S. N. Oshchepkova AU - O. M. Penkin AU - D. Savasteev TI - The Normal Derivative Lemma for the Laplacian on a Polyhedral Set JO - Matematičeskie zametki PY - 2014 SP - 116 EP - 125 VL - 96 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a9/ LA - ru ID - MZM_2014_96_1_a9 ER -
S. N. Oshchepkova; O. M. Penkin; D. Savasteev. The Normal Derivative Lemma for the Laplacian on a Polyhedral Set. Matematičeskie zametki, Tome 96 (2014) no. 1, pp. 116-125. http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a9/