The Normal Derivative Lemma for the Laplacian on a Polyhedral Set
Matematičeskie zametki, Tome 96 (2014) no. 1, pp. 116-125.

Voir la notice de l'article provenant de la source Math-Net.Ru

An analog of the Oleinik–Hopf normal derivative lemma for the Laplace operator on a polyhedral set is considered.
Keywords: normal derivative, polyhedral set, stratified set, Laplace operator, simplicial complex.
@article{MZM_2014_96_1_a9,
     author = {S. N. Oshchepkova and O. M. Penkin and D. Savasteev},
     title = {The {Normal} {Derivative} {Lemma} for the {Laplacian} on a {Polyhedral} {Set}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {116--125},
     publisher = {mathdoc},
     volume = {96},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a9/}
}
TY  - JOUR
AU  - S. N. Oshchepkova
AU  - O. M. Penkin
AU  - D. Savasteev
TI  - The Normal Derivative Lemma for the Laplacian on a Polyhedral Set
JO  - Matematičeskie zametki
PY  - 2014
SP  - 116
EP  - 125
VL  - 96
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a9/
LA  - ru
ID  - MZM_2014_96_1_a9
ER  - 
%0 Journal Article
%A S. N. Oshchepkova
%A O. M. Penkin
%A D. Savasteev
%T The Normal Derivative Lemma for the Laplacian on a Polyhedral Set
%J Matematičeskie zametki
%D 2014
%P 116-125
%V 96
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a9/
%G ru
%F MZM_2014_96_1_a9
S. N. Oshchepkova; O. M. Penkin; D. Savasteev. The Normal Derivative Lemma for the Laplacian on a Polyhedral Set. Matematičeskie zametki, Tome 96 (2014) no. 1, pp. 116-125. http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a9/

[1] A. A. Gavrilov, O. M. Penkin, “Analog lemmy o normalnoi proizvodnoi dlya ellipticheskogo uravneniya na stratifitsirovannom mnozhestve”, Differents. uravneniya, 36:2 (2000), 226–232 | MR | Zbl

[2] L. S. Pontryagin, Osnovy kombinatornoi topologii, Nauka, M., 1986 | MR

[3] Yu. V. Pokornyi, O. M. Penkin, V. L. Pryadiev, A. V. Borovskikh, K. P. Lazarev, S. A. Shabrov, Differentsialnye uravneniya na geometricheskikh grafakh, Fizmatlit, M., 2005 | MR

[4] O. A. Oleinik, “O svoistvakh reshenii nekotorykh kraevykh zadach dlya uravnenii ellipticheskogo tipa”, Matem. sb., 30:3 (1952), 695–702 | MR | Zbl

[5] E. Hopf, “A remark on linear elliptic differential equation of second order”, Proc. Amer. Math. Soc., 3 (1952), 791–793 | DOI | MR | Zbl

[6] L. Bers, F. Dzhon, M. Shekhter, Uravneniya s chastnymi proizvodnymi, Mir, M., 1966 | MR

[7] S. N. Oschepkova, O. M. Penkin, D. V. Savasteev, “Silnyi printsip maksimuma dlya ellipticheskogo operatora na stratifitsirovannom mnozhestve”, Matem. zametki, 92:2 (2012), 276–290 | DOI | Zbl

[8] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl