Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_96_1_a8, author = {Yu. M. Nechepurenko}, title = {Hermitian {Spectral} {Pseudoinversion} and {Its} {Applications}}, journal = {Matemati\v{c}eskie zametki}, pages = {101--115}, publisher = {mathdoc}, volume = {96}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a8/} }
Yu. M. Nechepurenko. Hermitian Spectral Pseudoinversion and Its Applications. Matematičeskie zametki, Tome 96 (2014) no. 1, pp. 101-115. http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a8/
[1] G. H. Golub, C. F. Van Loan, Matrix Computations, The John Hopkins Univ. Press, London, 1991
[2] S. K. Godunov, Sovremennye aspekty lineinoi algebry, Nauchnaya kniga, Novosibirsk, 1997
[3] Yu. M. Nechepurenko, G. V. Ovchinnikov, “Verkhnie otsenki norm reshenii ermitovykh sistem obyknovennykh differentsialnykh i algebraicheskikh uravnenii”, Ufimsk. matem. zhurn., 1:4 (2009), 125–132 | Zbl
[4] R. A. Horn, C. R. Johnson, Matrix Analysis, Cambridge Univ. Press, Cambridge, 1986
[5] M. Celik, L. Pileggi, A. Odabasioglu, IC Interconnect Analysis, Kluwer Acad. Publ., Norwell, MA, 2002
[6] B. C. Moore, “Principal component analysis in linear systems: controllability, observability, and model reduction”, IEEE Trans. Automat. Control, 26:1 (1981), 17–32 | DOI | MR | Zbl
[7] K. Glover, “All optimal Hankel-norm approximations of linear multivariable systems and their $L^\infty$-error bounds”, Internat. J. Control, 39:6 (1984), 1115–1193 | DOI | MR | Zbl
[8] T. Stykel, “Balanced truncation model reduction for semidiscretized Stokes equation”, Linear Algebra Appl., 415:2-3 (2006), 262–289 | DOI | MR | Zbl
[9] M. Heinkenschloss, D. C. Sorensen, K. Sun, “Balanced truncation model reduction for a class of descriptor systems with application to the Oseen equations”, SIAM J. Sci. Comput., 30:2 (2008), 1038–1063 | DOI | MR | Zbl
[10] I. Gohberg, P. Lancaster, L. Rodman, Matrix Polynomials, Comput. Sci. Appl. Math., Academic Press, New York, 1982 | MR | Zbl
[11] P. K. Suetin, Klassicheskie ortogonalnye mnogochleny, Nauka, M., 1979 | MR
[12] Templates for the Solution of Algebraic Eigenvalue Problems, Software Environ. Tools, 11, eds. Zh. Bai, J. Demmel, J. Dongarra, A. Ruhe, H. Van der Vorst, SIAM, Philadelphia, PA, 2000 | MR | Zbl
[13] Yu. M. Nechepurenko, G. V. Ovchinnikov, “An estimation of voltage settling time for RC-circuits”, Russ. J. Numer. Anal. Math. Modelling, 25:3 (2010), 253–259 | DOI | MR | Zbl
[14] J.-R. Li, J. White, “Low-rank solution of Lyapunov equations”, SIAM Rev., 46:4 (2004), 693–713 | MR | Zbl
[15] V. Druskin, L. Knizhnerman, V. Simoncini, “Analysis of the rational Krylov subspace and ADI methods for solving the Lyapunov equation”, SIAM J. Numer. Anal., 49:5 (2011), 1875–1898 | DOI | MR | Zbl