Discrete Analogs of Farkas and Accola's Theorems on Hyperelliptic Coverings of a Riemann Surface of Genus 2
Matematičeskie zametki, Tome 96 (2014) no. 1, pp. 70-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

Discrete versions of Accola and Farkas' theorems on the hyperellipticity of coverings of a Riemann surface of genus 2 are proved.
Mots-clés : hyperelliptic graph
Keywords: hyperelliptic covering, 2-edge-connected graph, genus of a graph, harmonic morphism of graphs, Riemann surface.
@article{MZM_2014_96_1_a5,
     author = {I. A. Mednykh},
     title = {Discrete {Analogs} of {Farkas} and {Accola's} {Theorems} on {Hyperelliptic} {Coverings} of a {Riemann} {Surface} of {Genus} 2},
     journal = {Matemati\v{c}eskie zametki},
     pages = {70--82},
     publisher = {mathdoc},
     volume = {96},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a5/}
}
TY  - JOUR
AU  - I. A. Mednykh
TI  - Discrete Analogs of Farkas and Accola's Theorems on Hyperelliptic Coverings of a Riemann Surface of Genus 2
JO  - Matematičeskie zametki
PY  - 2014
SP  - 70
EP  - 82
VL  - 96
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a5/
LA  - ru
ID  - MZM_2014_96_1_a5
ER  - 
%0 Journal Article
%A I. A. Mednykh
%T Discrete Analogs of Farkas and Accola's Theorems on Hyperelliptic Coverings of a Riemann Surface of Genus 2
%J Matematičeskie zametki
%D 2014
%P 70-82
%V 96
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a5/
%G ru
%F MZM_2014_96_1_a5
I. A. Mednykh. Discrete Analogs of Farkas and Accola's Theorems on Hyperelliptic Coverings of a Riemann Surface of Genus 2. Matematičeskie zametki, Tome 96 (2014) no. 1, pp. 70-82. http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a5/

[1] H. M. Farkas, “Automorphisms of compact Riemann surfaces and the vanishing of theta constants”, Bull. Amer. Math. Soc., 73 (1967), 231–232 | DOI | MR | Zbl

[2] R. D. M. Accola, “Riemann surfaces with automorphism groups admitting partitions”, Proc. Amer. Math. Soc., 21 (1969), 477–482 | DOI | MR | Zbl

[3] F. Enriques, “Sopra le superficie che posseggono un fascio ellittico o di genere due di curve razionali”, Rom. Acc. L. Rend. (5), 7:2 (1898), 281–286 | Zbl

[4] R. Hidalgo, “On a theorem of Accola”, Complex Variables Theory Appl., 36:1 (1998), 19–26 | DOI | MR | Zbl

[5] A. Mednykh, M. Reni, “Twofold unbranched coverings of genus two $3$-manifolds are hyperelliptic”, Israel J. Math., 123 (2001), 149–155 | DOI | MR | Zbl

[6] R. D. M. Accola, “On lifting of the hyperelliptic involutions”, Proc. Amer. Math. Soc., 122:2 (1994), 341–347 | DOI | MR | Zbl

[7] A. Mednykh, M. Reni, A. Vesnin, B. Zimmermann, “Three-fold coverings and hyperelliptic manifolds: a three-dimensional version of a result of Accola”, Rend. Istit. Mat. Univ. Trieste, 32, suppl. 1 (2001), 181–191 | MR | Zbl

[8] R. Bacher, P. de la Harpe, T. Nagnibeda, “The lattice of integral flows and the lattice of integral cuts on a finite graph”, Bull. Soc. Math. France, 125:2 (1997), 167–198 | MR | Zbl

[9] N. L. Biggs, “Chip-firing and the critical group of a graph”, J. Algebraic Combin., 9:1 (1999), 25–45 | DOI | MR | Zbl

[10] R. Cori, D. Rossin, “On the sandpile group of a graph”, European J. Combin., 21:4 (2000), 447–459 | DOI | MR | Zbl

[11] M. Baker, S. Norine, “Harmonic morphisms and hyperelliptic graphs”, Int. Math. Res. Not. IMRN, 15 (2009), 2914–2955 | MR | Zbl

[12] T. D. Parsons, T. Pisanski, B. Jackson, “Dual imbeddings and wrapped quasi-coverings of graphs”, Discrete Math., 31:1 (1980), 43–52 | DOI | MR | Zbl

[13] A. Hatcher, Algebraic Topology, Cambridge Univ. Press, Cambridge, 2002 | MR

[14] U. Massi, Dzh. Stollings, Algebraicheskaya topologiya. Vvedenie, Mir, M., 1977 | MR

[15] D. Ž. Djoković, “Automorphisms of graphs and coverings”, J. Combin. Theory Ser. B, 16:3 (1974), 243–247 | DOI | MR | Zbl

[16] V. Magnus, A. Karras, D. Soliter, Kombinatornaya teoriya grupp. Predstavlenie grupp v terminakh obrazuyuschikh i sootnoshenii, Nauka, M., 1974 | MR

[17] M. Hall, Jr., “Subgroups of finite index in free group”, Canadian J. Math., 1949, 187–190 | MR | Zbl