Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_96_1_a5, author = {I. A. Mednykh}, title = {Discrete {Analogs} of {Farkas} and {Accola's} {Theorems} on {Hyperelliptic} {Coverings} of a {Riemann} {Surface} of {Genus} 2}, journal = {Matemati\v{c}eskie zametki}, pages = {70--82}, publisher = {mathdoc}, volume = {96}, number = {1}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a5/} }
TY - JOUR AU - I. A. Mednykh TI - Discrete Analogs of Farkas and Accola's Theorems on Hyperelliptic Coverings of a Riemann Surface of Genus 2 JO - Matematičeskie zametki PY - 2014 SP - 70 EP - 82 VL - 96 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a5/ LA - ru ID - MZM_2014_96_1_a5 ER -
I. A. Mednykh. Discrete Analogs of Farkas and Accola's Theorems on Hyperelliptic Coverings of a Riemann Surface of Genus 2. Matematičeskie zametki, Tome 96 (2014) no. 1, pp. 70-82. http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a5/
[1] H. M. Farkas, “Automorphisms of compact Riemann surfaces and the vanishing of theta constants”, Bull. Amer. Math. Soc., 73 (1967), 231–232 | DOI | MR | Zbl
[2] R. D. M. Accola, “Riemann surfaces with automorphism groups admitting partitions”, Proc. Amer. Math. Soc., 21 (1969), 477–482 | DOI | MR | Zbl
[3] F. Enriques, “Sopra le superficie che posseggono un fascio ellittico o di genere due di curve razionali”, Rom. Acc. L. Rend. (5), 7:2 (1898), 281–286 | Zbl
[4] R. Hidalgo, “On a theorem of Accola”, Complex Variables Theory Appl., 36:1 (1998), 19–26 | DOI | MR | Zbl
[5] A. Mednykh, M. Reni, “Twofold unbranched coverings of genus two $3$-manifolds are hyperelliptic”, Israel J. Math., 123 (2001), 149–155 | DOI | MR | Zbl
[6] R. D. M. Accola, “On lifting of the hyperelliptic involutions”, Proc. Amer. Math. Soc., 122:2 (1994), 341–347 | DOI | MR | Zbl
[7] A. Mednykh, M. Reni, A. Vesnin, B. Zimmermann, “Three-fold coverings and hyperelliptic manifolds: a three-dimensional version of a result of Accola”, Rend. Istit. Mat. Univ. Trieste, 32, suppl. 1 (2001), 181–191 | MR | Zbl
[8] R. Bacher, P. de la Harpe, T. Nagnibeda, “The lattice of integral flows and the lattice of integral cuts on a finite graph”, Bull. Soc. Math. France, 125:2 (1997), 167–198 | MR | Zbl
[9] N. L. Biggs, “Chip-firing and the critical group of a graph”, J. Algebraic Combin., 9:1 (1999), 25–45 | DOI | MR | Zbl
[10] R. Cori, D. Rossin, “On the sandpile group of a graph”, European J. Combin., 21:4 (2000), 447–459 | DOI | MR | Zbl
[11] M. Baker, S. Norine, “Harmonic morphisms and hyperelliptic graphs”, Int. Math. Res. Not. IMRN, 15 (2009), 2914–2955 | MR | Zbl
[12] T. D. Parsons, T. Pisanski, B. Jackson, “Dual imbeddings and wrapped quasi-coverings of graphs”, Discrete Math., 31:1 (1980), 43–52 | DOI | MR | Zbl
[13] A. Hatcher, Algebraic Topology, Cambridge Univ. Press, Cambridge, 2002 | MR
[14] U. Massi, Dzh. Stollings, Algebraicheskaya topologiya. Vvedenie, Mir, M., 1977 | MR
[15] D. Ž. Djoković, “Automorphisms of graphs and coverings”, J. Combin. Theory Ser. B, 16:3 (1974), 243–247 | DOI | MR | Zbl
[16] V. Magnus, A. Karras, D. Soliter, Kombinatornaya teoriya grupp. Predstavlenie grupp v terminakh obrazuyuschikh i sootnoshenii, Nauka, M., 1974 | MR
[17] M. Hall, Jr., “Subgroups of finite index in free group”, Canadian J. Math., 1949, 187–190 | MR | Zbl