Discrete Analogs of Farkas and Accola's Theorems on Hyperelliptic Coverings of a Riemann Surface of Genus 2
Matematičeskie zametki, Tome 96 (2014) no. 1, pp. 70-82
Voir la notice de l'article provenant de la source Math-Net.Ru
Discrete versions of Accola and Farkas' theorems on the hyperellipticity of coverings of a Riemann surface of genus 2 are proved.
Mots-clés :
hyperelliptic graph
Keywords: hyperelliptic covering, 2-edge-connected graph, genus of a graph, harmonic morphism of graphs, Riemann surface.
Keywords: hyperelliptic covering, 2-edge-connected graph, genus of a graph, harmonic morphism of graphs, Riemann surface.
@article{MZM_2014_96_1_a5,
author = {I. A. Mednykh},
title = {Discrete {Analogs} of {Farkas} and {Accola's} {Theorems} on {Hyperelliptic} {Coverings} of a {Riemann} {Surface} of {Genus} 2},
journal = {Matemati\v{c}eskie zametki},
pages = {70--82},
publisher = {mathdoc},
volume = {96},
number = {1},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a5/}
}
TY - JOUR AU - I. A. Mednykh TI - Discrete Analogs of Farkas and Accola's Theorems on Hyperelliptic Coverings of a Riemann Surface of Genus 2 JO - Matematičeskie zametki PY - 2014 SP - 70 EP - 82 VL - 96 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a5/ LA - ru ID - MZM_2014_96_1_a5 ER -
I. A. Mednykh. Discrete Analogs of Farkas and Accola's Theorems on Hyperelliptic Coverings of a Riemann Surface of Genus 2. Matematičeskie zametki, Tome 96 (2014) no. 1, pp. 70-82. http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a5/