Discrete Analogs of Farkas and Accola's Theorems on Hyperelliptic Coverings of a Riemann Surface of Genus 2
Matematičeskie zametki, Tome 96 (2014) no. 1, pp. 70-82

Voir la notice de l'article provenant de la source Math-Net.Ru

Discrete versions of Accola and Farkas' theorems on the hyperellipticity of coverings of a Riemann surface of genus 2 are proved.
Mots-clés : hyperelliptic graph
Keywords: hyperelliptic covering, 2-edge-connected graph, genus of a graph, harmonic morphism of graphs, Riemann surface.
@article{MZM_2014_96_1_a5,
     author = {I. A. Mednykh},
     title = {Discrete {Analogs} of {Farkas} and {Accola's} {Theorems} on {Hyperelliptic} {Coverings} of a {Riemann} {Surface} of {Genus} 2},
     journal = {Matemati\v{c}eskie zametki},
     pages = {70--82},
     publisher = {mathdoc},
     volume = {96},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a5/}
}
TY  - JOUR
AU  - I. A. Mednykh
TI  - Discrete Analogs of Farkas and Accola's Theorems on Hyperelliptic Coverings of a Riemann Surface of Genus 2
JO  - Matematičeskie zametki
PY  - 2014
SP  - 70
EP  - 82
VL  - 96
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a5/
LA  - ru
ID  - MZM_2014_96_1_a5
ER  - 
%0 Journal Article
%A I. A. Mednykh
%T Discrete Analogs of Farkas and Accola's Theorems on Hyperelliptic Coverings of a Riemann Surface of Genus 2
%J Matematičeskie zametki
%D 2014
%P 70-82
%V 96
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a5/
%G ru
%F MZM_2014_96_1_a5
I. A. Mednykh. Discrete Analogs of Farkas and Accola's Theorems on Hyperelliptic Coverings of a Riemann Surface of Genus 2. Matematičeskie zametki, Tome 96 (2014) no. 1, pp. 70-82. http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a5/