A Continuity Criterion for Steiner-Type Ratios in the Gromov--Hausdorff Space
Matematičeskie zametki, Tome 96 (2014) no. 1, pp. 126-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

A criterion for the continuity of the Steiner ratio, the Steiner subratio, and the Steiner–Gromov ratio in the space of all compact metric spaces with the Gromov–Hausdorff metric is obtained. It is also proved that these functions are upper semicontinuous.
Keywords: Steiner ratio, Steiner subratio, Steiner–Gromov ratio, Gromov–Hausdorff metric, Gromov–Hausdorff space, minimal filling, Steiner minimal tree.
@article{MZM_2014_96_1_a10,
     author = {A. C. Pahkomova},
     title = {A {Continuity} {Criterion} for {Steiner-Type} {Ratios} in the {Gromov--Hausdorff} {Space}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {126--137},
     publisher = {mathdoc},
     volume = {96},
     number = {1},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a10/}
}
TY  - JOUR
AU  - A. C. Pahkomova
TI  - A Continuity Criterion for Steiner-Type Ratios in the Gromov--Hausdorff Space
JO  - Matematičeskie zametki
PY  - 2014
SP  - 126
EP  - 137
VL  - 96
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a10/
LA  - ru
ID  - MZM_2014_96_1_a10
ER  - 
%0 Journal Article
%A A. C. Pahkomova
%T A Continuity Criterion for Steiner-Type Ratios in the Gromov--Hausdorff Space
%J Matematičeskie zametki
%D 2014
%P 126-137
%V 96
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a10/
%G ru
%F MZM_2014_96_1_a10
A. C. Pahkomova. A Continuity Criterion for Steiner-Type Ratios in the Gromov--Hausdorff Space. Matematičeskie zametki, Tome 96 (2014) no. 1, pp. 126-137. http://geodesic.mathdoc.fr/item/MZM_2014_96_1_a10/

[1] C. F. Gauss, “Briefwechsel Gauss–Schumacher”, Werke, Bd. X, 1, Göttingem, 1917, 459–468

[2] V. Jarnik, M. Kössler, “O minimalnich grafeth obeahujicich n danich bodu”, Čas. Mat. Fys., 63 (1934), 223–235 | Zbl

[3] M. Gromov, “Filling Riemannian manifolds”, J. Differential Geom., 18 (1983), 1–147 | MR | Zbl

[4] A. O. Ivanov, A. A. Tuzhilin, “Odnomernaya problema Gromova o minimalnom zapolnenii”, Matem. sb., 203:5 (2012), 65–118 | DOI | MR | Zbl

[5] A. L. Garkavi, V. A. Shmatkov, “O tochke Lame i ee obobscheniyakh v normirovannom prostranstve”, Matem. sb., 95:2 (1974), 272–293 | MR | Zbl

[6] L. Vesely, “A characterization of reflexivity in the terms of the existence of generalized centers”, Extracta Math., 8:2-3 (1993), 125–131 | MR | Zbl

[7] M. Baronti, E. Casini, P. L. Papini, “Equilateral sets and their central points”, Rend. Mat. Appl. (7), 13:1 (1993), 133–148 | MR | Zbl

[8] P. L. Papini, “Two new examples of sets without medians and centers”, Top, 13:2 (2005), 315–320 | MR | Zbl

[9] P. A. Borodin, “Primer nesuschestvovaniya tochki Shteinera v banakhovom prostranstve”, Matem. zametki, 87:4 (2010), 514–518 | DOI | MR | Zbl

[10] A. O. Ivanov, A. A. Tuzhilin, Teoriya ekstremalnykh setei, Sovremennaya matematika, IKI, M.–Izhevsk, 2003

[11] E. N. Gilbert, H. O. Pollak, “Steiner minimal trees”, SIAM J. Appl. Math., 16:1 (1968), 1–29 | DOI | MR | Zbl

[12] D. Yu. Burago, Yu. D. Burago, S. V. Ivanov, Kurs metricheskoi geometrii, Sovremennaya matematika, IKI, M.–Izhevsk, 2004

[13] D. Cieslik, The Steiner Ratio, Comb. Optim., 10, Kluwer Acad. Publ., Dordrecht, 2001 | MR | Zbl

[14] A. S. Pakhomova, “Otsenki dlya subotnosheniya Shteinera i otnosheniya Shteinera–Gromova”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2014, no. 1, 17–25