The Samarskii Problem for the Fractal Diffusion Equation
Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 878-883.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence and uniqueness of the solution of the Samarskii problem in a modified setting for a loaded differential fractal diffusion equation and propose a constructive scheme for the equivalent reduction of this nonlocal boundary-value problem to the corresponding local problem.
Mots-clés : fractal diffusion equation
Keywords: Samarskii problem for the diffusion equation, Riemann–Liouville differential operator, Euler gamma function.
@article{MZM_2014_95_6_a8,
     author = {Z. A. Nakhusheva},
     title = {The {Samarskii} {Problem} for the {Fractal} {Diffusion} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {878--883},
     publisher = {mathdoc},
     volume = {95},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a8/}
}
TY  - JOUR
AU  - Z. A. Nakhusheva
TI  - The Samarskii Problem for the Fractal Diffusion Equation
JO  - Matematičeskie zametki
PY  - 2014
SP  - 878
EP  - 883
VL  - 95
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a8/
LA  - ru
ID  - MZM_2014_95_6_a8
ER  - 
%0 Journal Article
%A Z. A. Nakhusheva
%T The Samarskii Problem for the Fractal Diffusion Equation
%J Matematičeskie zametki
%D 2014
%P 878-883
%V 95
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a8/
%G ru
%F MZM_2014_95_6_a8
Z. A. Nakhusheva. The Samarskii Problem for the Fractal Diffusion Equation. Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 878-883. http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a8/

[1] L. M. Zelenyi, A. V. Milovanov, “Fraktalnaya topologiya i strannaya kinetika: ot teorii perkolyatsii k problemam kosmicheskoi elektrodinamiki”, UFN, 174:8 (2004), 809–852 | DOI

[2] A. M. Nakhushev, Nagruzhennye uravneniya i ikh primenenie, Nauka, M., 2012

[3] V. A. Nakhusheva, Differentsialnye uravneniya matematicheskikh modelei nelokalnykh protsessov, Nauka, M., 2006 | MR | Zbl

[4] A. V. Pskhu, Uravneniya v chastnykh proizvodnykh drobnogo poryadka, Nauka, M., 2005 | MR | Zbl

[5] V. A. Steklov, Osnovnye zadachi matematicheskoi fiziki, Nauka, M., 1983 | MR | Zbl

[6] N. I. Ionkin, “Reshenie odnoi kraevoi zadachi teorii teploprovodnosti s neklassicheskim kraevym usloviem”, Differents. uravneniya, 13:2 (1977), 294–304 | MR | Zbl

[7] N. I. Ionkin, E. I. Moiseev, “O zadache teploprovodnosti s dvukhtochechnymi kraevymi usloviyami”, Differents. uravneniya, 15:7 (1979), 1284–1295 | MR | Zbl

[8] A. Yu. Mokin, “Primenenie neklassicheskogo metoda razdeleniya peremennykh k resheniyu nelokalnoi zadachi teploprovodnosti”, Differents. uravneniya, 49:1 (2013), 60–67 | Zbl

[9] Z. A. Nakhusheva, “Kharakteristicheskie i smeshannye zadachi dlya uravnenii vtorogo poryadka giperbolicheskogo tipa”, Differents. uravneniya, 48:10 (2012), 1418–1427 | Zbl

[10] T. D. Dzhuraev, Kraevye zadachi dlya uravnenii smeshannogo i smeshanno-sostavnogo tipov, Fan, Tashkent, 1979 | MR | Zbl