On the Convergence of Series in Spaces of Integrable Functions
Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 836-841
Cet article a éte moissonné depuis la source Math-Net.Ru
A sufficient condition for the convergence of series in the spaces $L_p$ on a set of infinite measure is obtained.
Keywords:
convergence of series in $L_p$, $\sigma$-additive measure
Mots-clés : Hölder's inequality.
Mots-clés : Hölder's inequality.
@article{MZM_2014_95_6_a4,
author = {I. R. Kayumov},
title = {On the {Convergence} of {Series} in {Spaces} of {Integrable} {Functions}},
journal = {Matemati\v{c}eskie zametki},
pages = {836--841},
year = {2014},
volume = {95},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a4/}
}
I. R. Kayumov. On the Convergence of Series in Spaces of Integrable Functions. Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 836-841. http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a4/
[1] V. Yu. Protasov, “Priblizheniya naiprosteishimi drobyami i preobrazovanie Gilberta”, Izv. RAN. Ser. matem., 73:2 (2009), 123–140 | DOI | MR | Zbl
[2] I. R. Kayumov, “Skhodimost ryadov naiprosteishikh drobei v $L_p(\mathbb R)$”, Matem. sb., 202:10 (2011), 87–98 | DOI | MR | Zbl
[3] G. G. Khardi, Dzh. E. Littlvud, G. Polia, Neravenstva, IL, M., 1948 | MR | Zbl