On the Convergence of Series in Spaces of Integrable Functions
Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 836-841.

Voir la notice de l'article provenant de la source Math-Net.Ru

A sufficient condition for the convergence of series in the spaces $L_p$ on a set of infinite measure is obtained.
Keywords: convergence of series in $L_p$, $\sigma$-additive measure, Hölder's inequality.
@article{MZM_2014_95_6_a4,
     author = {I. R. Kayumov},
     title = {On the {Convergence} of {Series} in {Spaces} of {Integrable} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {836--841},
     publisher = {mathdoc},
     volume = {95},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a4/}
}
TY  - JOUR
AU  - I. R. Kayumov
TI  - On the Convergence of Series in Spaces of Integrable Functions
JO  - Matematičeskie zametki
PY  - 2014
SP  - 836
EP  - 841
VL  - 95
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a4/
LA  - ru
ID  - MZM_2014_95_6_a4
ER  - 
%0 Journal Article
%A I. R. Kayumov
%T On the Convergence of Series in Spaces of Integrable Functions
%J Matematičeskie zametki
%D 2014
%P 836-841
%V 95
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a4/
%G ru
%F MZM_2014_95_6_a4
I. R. Kayumov. On the Convergence of Series in Spaces of Integrable Functions. Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 836-841. http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a4/

[1] V. Yu. Protasov, “Priblizheniya naiprosteishimi drobyami i preobrazovanie Gilberta”, Izv. RAN. Ser. matem., 73:2 (2009), 123–140 | DOI | MR | Zbl

[2] I. R. Kayumov, “Skhodimost ryadov naiprosteishikh drobei v $L_p(\mathbb R)$”, Matem. sb., 202:10 (2011), 87–98 | DOI | MR | Zbl

[3] G. G. Khardi, Dzh. E. Littlvud, G. Polia, Neravenstva, IL, M., 1948 | MR | Zbl