On $n$-Term Approximations with Respect to Frames Bounded in $L^p(0,1)$, $2$
Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 830-835
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, best canonical $n$-term approximations in the norm of the spaces $L^2(0,1)$ of the family $\mathbb I$ of characteristic functions of intervals are studied.
Keywords:
best canonical $n$-term approximation, tight frame, Haar system, Bessel's inequality, Rademacher function, Khinchine's inequality.
@article{MZM_2014_95_6_a3,
author = {B. S. Kashin and A. V. Meleshkina},
title = {On $n${-Term} {Approximations} with {Respect} to {Frames} {Bounded} in $L^p(0,1)$, $2<p<\infty$},
journal = {Matemati\v{c}eskie zametki},
pages = {830--835},
year = {2014},
volume = {95},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a3/}
}
B. S. Kashin; A. V. Meleshkina. On $n$-Term Approximations with Respect to Frames Bounded in $L^p(0,1)$, $2
[1] I. Ya. Novikov, V. Yu. Protasov, M. A. Skopina, Teoriya vspleskov, Fizmatlit, M., 2005 | MR | Zbl
[2] B. S. Kashin, “On lower estimates for $n$-term approximation in Hilbert spaces”, Approximation Theory, DARBA, Sofia, 2002, 241–257 | MR | Zbl
[3] B. S. Kashin, T. Yu. Kulikova, “O spravedlivosti dlya freimov odnogo rezultata ob ortogonalnykh sistemakh”, Matem. zametki, 77:2 (2005), 311–312 | DOI | MR | Zbl
[4] B. C. Kashin, A. A. Saakyan, Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl