Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_95_6_a2, author = {V. V. Gorbatsevich}, title = {On {Invariant} {Sub-Riemannian} {Structures} on {Compact} {Homogeneous} {Spaces} with {Discrete} {Stationary} {Subgroup}}, journal = {Matemati\v{c}eskie zametki}, pages = {821--829}, publisher = {mathdoc}, volume = {95}, number = {6}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a2/} }
TY - JOUR AU - V. V. Gorbatsevich TI - On Invariant Sub-Riemannian Structures on Compact Homogeneous Spaces with Discrete Stationary Subgroup JO - Matematičeskie zametki PY - 2014 SP - 821 EP - 829 VL - 95 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a2/ LA - ru ID - MZM_2014_95_6_a2 ER -
V. V. Gorbatsevich. On Invariant Sub-Riemannian Structures on Compact Homogeneous Spaces with Discrete Stationary Subgroup. Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 821-829. http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a2/
[1] P. K. Rashevskii, “O soedinimosti lyubykh dvukh tochek vpolne negolonomnogo prostranstva dopustimoi liniei”, Uchen. zap. Mosk. gos. ped. in-ta im. K. Libknekhta. Ser. fiz.-matem., 3:2 (1938), 83–94
[2] W. L. Chow, “Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung”, Math. Ann., 117 (1940), 98–105 | DOI | MR | Zbl
[3] A. A. Agrachev, Yu. L. Sachkov, Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005
[4] V. V. Gorbatsevich, A. L. Onischik, “Gruppy Li preobrazovanii”, Gruppy Li i algebry Li – 1, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 20, VINITI, M., 1988, 103–240 | MR | Zbl
[5] Dzh. Volf, Prostranstva postoyannoi krivizny, Nauka, M., 1982 | MR
[6] N. Burbaki, Gruppy i algebry Li. Gl. 1–3. Algebry Li, svobodnye algebry Li i gruppy Li, Elementy matematiki, Mir, M., 1976 | MR | Zbl
[7] G. D. Mostow, “Arithmetic subgroups of groups with radical”, Ann. of Math. (2), 93:3 (1971), 409–438 | DOI | MR | Zbl
[8] G. D. Mostow, “On the topology of homogeneous spaces of finite measure”, Symp. Math., 16, Acad. Press, London, 1975, 375–398 | MR | Zbl