Euclidean Modules
Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 937-946
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we introduce the notion of Euclidean module and weakly Euclidean ring. We prove the main result that a commutative ring $R$ is weakly Euclidean if and only if every cyclic $R$-module is Euclidean, and also if and only if $\operatorname{End}({}_{R}M)$ is weakly Euclidean for each cyclic $R$-module $M$. In addition, some properties of torsion-free Euclidean modules are presented.
Mots-clés :
Euclidean modules, torsion-free Euclidean modules.
Keywords: weakly Euclidean rings
Keywords: weakly Euclidean rings
@article{MZM_2014_95_6_a13,
author = {Jichun Liu and Miaosen Chen},
title = {Euclidean {Modules}},
journal = {Matemati\v{c}eskie zametki},
pages = {937--946},
year = {2014},
volume = {95},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a13/}
}
Jichun Liu; Miaosen Chen. Euclidean Modules. Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 937-946. http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a13/
[1] A. G. Naoum, F. H. Al-Alwan, “Dedekind modules”, Comm. Algebra, 24:2 (1996), 397–412 | MR | Zbl
[2] M. Alkan, B. Sarac, Y. Tiraş, “Dedekind modules”, Comm. Algebra, 33:5 (2005), 1617–1626 | MR | Zbl
[3] A. M. Rahimi, “Euclidean modules”, Libertas Math., 22 (2002), 123–126 | MR | Zbl
[4] O. A. Cámpoli, “A principal ideal domain that is not a Euclidean domain”, Amer. Math. Monthly, 95:9 (1988), 868–871 | DOI | MR | Zbl
[5] F. W. Anderson, K. R. Fuller, Rings and Categories of Modules, Gradu. Texts in Math., 13, Springer-Verlag, New York, 1974 | MR | Zbl