Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_95_6_a10, author = {K. V. Runovskii}, title = {A {Direct} {Theorem} of {Approximation} {Theory} for a {General} {Modulus} of {Smoothness}}, journal = {Matemati\v{c}eskie zametki}, pages = {899--910}, publisher = {mathdoc}, volume = {95}, number = {6}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a10/} }
K. V. Runovskii. A Direct Theorem of Approximation Theory for a General Modulus of Smoothness. Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 899-910. http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a10/
[1] R. DeVore, G. G. Lorentz, Constructive Approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993 | MR | Zbl
[2] M. K. Potapov, B. V. Simonov, “Moduli gladkosti polozhitelnykh poryadkov funktsii iz prostranstv $L_p$, $1 \leqslant p \leqslant+\infty$”, Sovremennye problemy matematiki i mekhaniki, Tr. mekh.-matem. fak-ta MGU, 7, no. 1, Izd-vo mekh.-mat. fak-ta MGU, M., 2011, 100–109
[3] K. Runovski, H.-J. Schmeisser, On Modulus of Continuity Related to Riesz Derivative, Preprint, Friedrich-Schiller-Universität Jena, 2011
[4] K. V. Runovskii, Priblizhenie semeistvami lineinykh polinomialnykh operatorov, Dis. $\dots$ dokt. fiz.-matem. nauk, MGU, M., 2010
[5] V. Rukasov, K. Runovski, H.-J. Schmeisser, “Approximation by families of linear polynomial operators and smoothness properties of functions”, Math. Nachr., 284:11-12 (2011), 1523–1537 | DOI | MR | Zbl
[6] E. M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl
[7] P. L. Butzer, R. J. Nessel, Fourier Analysis and Approximation. Vol. 1. One-Dimensional Theory, Pure Appl. Math., 40, Acad. Press, New-York, 1971 | MR | Zbl
[8] K. Runovski, H.-J. Schmeisser, “Methods of trigonometric approximation and generalized smoothness. I”, Eurasian Math. J., 2:3 (2011), 98–124 | MR | Zbl