A Direct Theorem of Approximation Theory for a General Modulus of Smoothness
Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 899-910.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notion of general modulus of smoothness in the spaces $L_p$ of $2\pi$-periodic $p$th-power integrable functions; in these spaces, the coefficients multiplying the values of a given function at the nodes of the uniform lattice are the Fourier coefficients of some $2\pi$-periodic function called the generator of the modulus. It is shown that all known moduli of smoothness are special cases of this general construction. For the introduced modulus, in the case $1 \le p \le {+\infty}$, we prove a direct theorem of approximation theory (a Jackson-type estimate). It is shown that the known Jackson-type estimates for the classical moduli, the modulus of positive fractional order, and the modulus of smoothness related to the Riesz derivative are its direct consequences. We also obtain a universal structural description of classes of functions whose best approximations have a certain order of convergence to zero.
Keywords: Jackson-type estimate, modulus of smoothness, $2\pi$-periodic $p$th-power integrable function, Fourier mean, Hölder's inequality
Mots-clés : Fourier coefficient.
@article{MZM_2014_95_6_a10,
     author = {K. V. Runovskii},
     title = {A {Direct} {Theorem} of {Approximation} {Theory} for a {General} {Modulus} of {Smoothness}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {899--910},
     publisher = {mathdoc},
     volume = {95},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a10/}
}
TY  - JOUR
AU  - K. V. Runovskii
TI  - A Direct Theorem of Approximation Theory for a General Modulus of Smoothness
JO  - Matematičeskie zametki
PY  - 2014
SP  - 899
EP  - 910
VL  - 95
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a10/
LA  - ru
ID  - MZM_2014_95_6_a10
ER  - 
%0 Journal Article
%A K. V. Runovskii
%T A Direct Theorem of Approximation Theory for a General Modulus of Smoothness
%J Matematičeskie zametki
%D 2014
%P 899-910
%V 95
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a10/
%G ru
%F MZM_2014_95_6_a10
K. V. Runovskii. A Direct Theorem of Approximation Theory for a General Modulus of Smoothness. Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 899-910. http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a10/

[1] R. DeVore, G. G. Lorentz, Constructive Approximation, Grundlehren Math. Wiss., 303, Springer-Verlag, Berlin, 1993 | MR | Zbl

[2] M. K. Potapov, B. V. Simonov, “Moduli gladkosti polozhitelnykh poryadkov funktsii iz prostranstv $L_p$, $1 \leqslant p \leqslant+\infty$”, Sovremennye problemy matematiki i mekhaniki, Tr. mekh.-matem. fak-ta MGU, 7, no. 1, Izd-vo mekh.-mat. fak-ta MGU, M., 2011, 100–109

[3] K. Runovski, H.-J. Schmeisser, On Modulus of Continuity Related to Riesz Derivative, Preprint, Friedrich-Schiller-Universität Jena, 2011

[4] K. V. Runovskii, Priblizhenie semeistvami lineinykh polinomialnykh operatorov, Dis. $\dots$ dokt. fiz.-matem. nauk, MGU, M., 2010

[5] V. Rukasov, K. Runovski, H.-J. Schmeisser, “Approximation by families of linear polynomial operators and smoothness properties of functions”, Math. Nachr., 284:11-12 (2011), 1523–1537 | DOI | MR | Zbl

[6] E. M. Stein, G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971 | MR | Zbl

[7] P. L. Butzer, R. J. Nessel, Fourier Analysis and Approximation. Vol. 1. One-Dimensional Theory, Pure Appl. Math., 40, Acad. Press, New-York, 1971 | MR | Zbl

[8] K. Runovski, H.-J. Schmeisser, “Methods of trigonometric approximation and generalized smoothness. I”, Eurasian Math. J., 2:3 (2011), 98–124 | MR | Zbl