A Generalization of Bonnet's Theorem on Darboux Surfaces
Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 812-820.

Voir la notice de l'article provenant de la source Math-Net.Ru

The well-known Bonnet theorem claims that, on a Darboux surface in three-dimensional Euclidean space, along each line of curvature, the corresponding principal curvature is proportional to the cube of another principal curvature. In the present paper, this theorem is generalized (with respect to dimension) to $n$-dimensional hypersurfaces of Euclidean spaces.
Keywords: Bonnet theorem, Darboux surface, Euclidean space, line of curvature, principal curvature, Darboux tensor, Gaussian curvature.
Mots-clés : $n$-dimensional hypersurface
@article{MZM_2014_95_6_a1,
     author = {I. I. Bodrenko},
     title = {A {Generalization} of {Bonnet's} {Theorem} on {Darboux} {Surfaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {812--820},
     publisher = {mathdoc},
     volume = {95},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a1/}
}
TY  - JOUR
AU  - I. I. Bodrenko
TI  - A Generalization of Bonnet's Theorem on Darboux Surfaces
JO  - Matematičeskie zametki
PY  - 2014
SP  - 812
EP  - 820
VL  - 95
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a1/
LA  - ru
ID  - MZM_2014_95_6_a1
ER  - 
%0 Journal Article
%A I. I. Bodrenko
%T A Generalization of Bonnet's Theorem on Darboux Surfaces
%J Matematičeskie zametki
%D 2014
%P 812-820
%V 95
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a1/
%G ru
%F MZM_2014_95_6_a1
I. I. Bodrenko. A Generalization of Bonnet's Theorem on Darboux Surfaces. Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 812-820. http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a1/

[1] I. I. Bodrenko, Obobschennye poverkhnosti Darbu v prostranstvakh postoyannoi krivizny, LAP Lambert Acad. Publ., Saarbrücken, Germany, 2013

[2] V. F. Kagan, Osnovy teorii poverkhnostei v tenzornom izlozhenii. Ch. 2. Poverkhnosti v prostranstve. Otobrazheniya i izgibaniya poverkhnostei. Spetsialnye voprosy, Gostekhizdat, M.-L., 1948 | MR

[3] Yu. A. Aminov, “Uslovie golonomnosti glavnykh napravlenii podmnogoobraziya”, Matem. zametki, 41:4 (1987), 543–548 | MR | Zbl