The Resonance Theorem for Subspaces
Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 803-811.

Voir la notice de l'article provenant de la source Math-Net.Ru

Under some additional assumptions on an unbounded sequence of operators and the geometry of the spaces, it is shown that, in the classical Banach–Steinhaus resonance theorem, the set of divergence contains an infinite-dimensional space, excluding zero.
Keywords: Banach–Steinhaus resonance theorem, Banach space, Banach couple, linear operator, Hahn–Banach theorem.
Mots-clés : set of divergence
@article{MZM_2014_95_6_a0,
     author = {E. I. Berezhnoi},
     title = {The {Resonance} {Theorem} for {Subspaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--811},
     publisher = {mathdoc},
     volume = {95},
     number = {6},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a0/}
}
TY  - JOUR
AU  - E. I. Berezhnoi
TI  - The Resonance Theorem for Subspaces
JO  - Matematičeskie zametki
PY  - 2014
SP  - 803
EP  - 811
VL  - 95
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a0/
LA  - ru
ID  - MZM_2014_95_6_a0
ER  - 
%0 Journal Article
%A E. I. Berezhnoi
%T The Resonance Theorem for Subspaces
%J Matematičeskie zametki
%D 2014
%P 803-811
%V 95
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a0/
%G ru
%F MZM_2014_95_6_a0
E. I. Berezhnoi. The Resonance Theorem for Subspaces. Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 803-811. http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a0/

[1] B. C. Kashin, A. A. Saakyan, Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl

[2] V. P. Fonf, V. I. Gurariy, M. I. Kadets, “An infinite dimensional subspace $C[0,1]$ consisting of nowhere differentiable functions”, C. R. Acad. Bulgare Sci., 52:11-12 (1999), 13–16 | MR | Zbl

[3] P. P. Petrushev, S. L. Troyanski, “O teoreme Banakha–Mazura ob universalnosti $C[0,1]$”, C. R. Acad. Bulgare Sci., 37:3 (1984), 283–285 | MR | Zbl

[4] V. I. Gurarii, “Lineinoe prostranstvo sostoyaschee iz vsyudu nedifferentsiruemykh funktsii”, C. R. Acad. Bulgare Sci., 44:5 (1991), 13–16 | MR | Zbl

[5] I. Rodríguez-Piazza, “Every separable Banach space is isometric to a space of continuous nowhere differentiable functions”, Proc. Amer. Math. Soc., 123:12 (1995), 3649–3654 | DOI | MR | Zbl

[6] E. I. Bepezhnoi, “Podprostranstvo $C[0,1]$, sostoyaschee iz funktsii, ne imeyuschikh konechnykh odnostoronikh proizvodnykh ni v odnoi tochke”, Matem. zametki, 73:3 (2003), 348–354 | DOI | MR | Zbl

[7] E. I. Bepezhnoi, “Podprostranstvo prostranstva Geldera, sostoyaschee iz samykh negladkikh funktsii”, Matem. zametki, 74:3 (2003), 329–339 | DOI | MR | Zbl

[8] E. I. Bepezhnoi, “O podprostranstvakh prostranstv Geldera, sostoyaschikh iz funktsii minimalnoi gladkosti”, Dokl. RAN, 399:4 (2004), 446–449 | MR

[9] E. I. Bepezhnoi, “O podprostranstvakh $C[0,1]$, sostoyaschikh iz negladkikh funktsii”, Matem. zametki, 81:4 (2007), 490–495 | DOI | MR | Zbl