Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_95_6_a0, author = {E. I. Berezhnoi}, title = {The {Resonance} {Theorem} for {Subspaces}}, journal = {Matemati\v{c}eskie zametki}, pages = {803--811}, publisher = {mathdoc}, volume = {95}, number = {6}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a0/} }
E. I. Berezhnoi. The Resonance Theorem for Subspaces. Matematičeskie zametki, Tome 95 (2014) no. 6, pp. 803-811. http://geodesic.mathdoc.fr/item/MZM_2014_95_6_a0/
[1] B. C. Kashin, A. A. Saakyan, Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl
[2] V. P. Fonf, V. I. Gurariy, M. I. Kadets, “An infinite dimensional subspace $C[0,1]$ consisting of nowhere differentiable functions”, C. R. Acad. Bulgare Sci., 52:11-12 (1999), 13–16 | MR | Zbl
[3] P. P. Petrushev, S. L. Troyanski, “O teoreme Banakha–Mazura ob universalnosti $C[0,1]$”, C. R. Acad. Bulgare Sci., 37:3 (1984), 283–285 | MR | Zbl
[4] V. I. Gurarii, “Lineinoe prostranstvo sostoyaschee iz vsyudu nedifferentsiruemykh funktsii”, C. R. Acad. Bulgare Sci., 44:5 (1991), 13–16 | MR | Zbl
[5] I. Rodríguez-Piazza, “Every separable Banach space is isometric to a space of continuous nowhere differentiable functions”, Proc. Amer. Math. Soc., 123:12 (1995), 3649–3654 | DOI | MR | Zbl
[6] E. I. Bepezhnoi, “Podprostranstvo $C[0,1]$, sostoyaschee iz funktsii, ne imeyuschikh konechnykh odnostoronikh proizvodnykh ni v odnoi tochke”, Matem. zametki, 73:3 (2003), 348–354 | DOI | MR | Zbl
[7] E. I. Bepezhnoi, “Podprostranstvo prostranstva Geldera, sostoyaschee iz samykh negladkikh funktsii”, Matem. zametki, 74:3 (2003), 329–339 | DOI | MR | Zbl
[8] E. I. Bepezhnoi, “O podprostranstvakh prostranstv Geldera, sostoyaschikh iz funktsii minimalnoi gladkosti”, Dokl. RAN, 399:4 (2004), 446–449 | MR
[9] E. I. Bepezhnoi, “O podprostranstvakh $C[0,1]$, sostoyaschikh iz negladkikh funktsii”, Matem. zametki, 81:4 (2007), 490–495 | DOI | MR | Zbl