Estimates of the Approximation Characteristics of the Classes~$B^{\Omega}_{p,\theta}$ of Periodic Functions of Several Variables with Given Majorant of Mixed Moduli of Continuity
Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 734-749.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain order-sharp estimates of the orthogonal projection widths of the classes $B^{\Omega}_{p,\theta}$ of periodic functions of several variables whose majorant of the mixed moduli of continuity contains both exponential and logarithmic multipliers.
Keywords: class $B^{\Omega}_{p,\theta}$ of periodic functions, orthogonal projection width, mixed modulus of continuity, Hölder's inequality, Minkowskii's inequality.
@article{MZM_2014_95_5_a8,
     author = {A. F. Konograj},
     title = {Estimates of the {Approximation} {Characteristics} of the {Classes~}$B^{\Omega}_{p,\theta}$ of {Periodic} {Functions} of {Several} {Variables} with {Given} {Majorant} of {Mixed} {Moduli} of {Continuity}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {734--749},
     publisher = {mathdoc},
     volume = {95},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a8/}
}
TY  - JOUR
AU  - A. F. Konograj
TI  - Estimates of the Approximation Characteristics of the Classes~$B^{\Omega}_{p,\theta}$ of Periodic Functions of Several Variables with Given Majorant of Mixed Moduli of Continuity
JO  - Matematičeskie zametki
PY  - 2014
SP  - 734
EP  - 749
VL  - 95
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a8/
LA  - ru
ID  - MZM_2014_95_5_a8
ER  - 
%0 Journal Article
%A A. F. Konograj
%T Estimates of the Approximation Characteristics of the Classes~$B^{\Omega}_{p,\theta}$ of Periodic Functions of Several Variables with Given Majorant of Mixed Moduli of Continuity
%J Matematičeskie zametki
%D 2014
%P 734-749
%V 95
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a8/
%G ru
%F MZM_2014_95_5_a8
A. F. Konograj. Estimates of the Approximation Characteristics of the Classes~$B^{\Omega}_{p,\theta}$ of Periodic Functions of Several Variables with Given Majorant of Mixed Moduli of Continuity. Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 734-749. http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a8/

[1] A. F. Konograi, “Otsinki aproksimativnikh kharakteristik klasiv $B^{\Omega}_{p,\theta}$ periodichnikh funktsii dvokh zminnikh z zadanoyu mazhorantoyu mishanikh moduliv neperervnosti”, Ukr. matem. zhurn., 63:2 (2011), 176–186

[2] A. F. Konograi, “Otsinki aproksimativnikh kharakteristik klasiv $B^{\Omega}_{p,\theta}$ periodichnikh funktsii dvokh zminnikh z zadanoyu mazhorantoyu mishanikh moduliv neperervnosti v prostori $L_\infty$”, Teoriya nablizhennya funktsii ta sumizhni pitannya, Zb. prats In-tu matem. NAN Ukraïni, 8, no. 1, In-t matem. NAN Ukraïni, Kiïv, 2011, 97–110 | Zbl

[3] N. K. Bari, S. B. Stechkin, “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. MMO, 5, GITTL, M., 1956, 483–522 | MR | Zbl

[4] S. Yongsheng, W. Heping, “Representation and Approximation of Multivariate Periodic Functions with Bounded Mixed Moduli of Smoothness”, Teoriya priblizhenii. Garmonicheskii analiz, Tr. MIAN, 219, Nauka, M., 1997, 356–377 | MR | Zbl

[5] N. N. Pustovoitov, “Predstavlenie i priblizhenie periodicheskikh funktsii mnogikh peremennykh s zadannym smeshannym modulem nepreryvnosti”, Anal. Math., 20:1 (1994), 35–48 | MR | Zbl

[6] P. I. Lizorkin, S. M. Nikolskii, “Prostranstva funktsii smeshannoi gladkosti s dekompozitsionnoi tochki zreniya”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 13, Tr. MIAN SSSR, 187, Nauka, M., 1989, 143–161 | MR | Zbl

[7] S. A. Stasyuk, O. V. Fedunik, “Aproksimativni kharakteristiki klasiv $B_{p,\theta}^{\Omega}$ periodichnikh funktsii bagatokh zminnikh”, Ukr. matem. zhurn., 58:5 (2006), 692–704 | MR | Zbl

[8] V. N. Temlyakov, “Poperechniki nekotorykh klassov funktsii neskolkikh peremennykh”, Dokl. AN SSSR, 267:2 (1982), 314–317 | MR

[9] Din Zung, “Priblizhenie funktsii mnogikh peremennykh na tore trigonometricheskimi polinomami”, Matem. sb., 131:2 (1986), 251–271 | MR | Zbl

[10] V. N. Temlyakov, “Otsenki asimptoticheskikh kharakteristik klassov funktsii s ogranichennoi smeshannoi proizvodnoi ili raznostyu”, Sbornik trudov Vsesoyuznoi shkoly po teorii funktsii, Tr. MIAN SSSR, 189, Nauka, M., 1989, 138–168 | MR | Zbl

[11] E. M. Galeev, “Poryadki ortoproektsionnykh poperechnikov klassov periodicheskikh funktsii odnoi i neskolkikh peremennykh”, Matem. zametki, 43:2 (1988), 197–211 | MR | Zbl

[12] E. M. Galeev, “Priblizhenie klassov periodicheskikh funktsii neskolkikh peremennykh yadernymi operatorami”, Matem. zametki, 47:3 (1990), 32–41 | MR | Zbl

[13] A. V. Andrianov, V. N. Temlyakov, “O dvukh metodakh rasprostraneniya svoistv sistem funktsii ot odnoi peremennoi na ikh tenzornoe proizvedenie”, Teoriya priblizhenii. Garmonicheskii analiz, Tr. MIAN, 219, Nauka, M., 1997, 32–43 | MR | Zbl

[14] N. N. Pustovoitov, “Ortopoperechniki klassov mnogomernykh periodicheskikh funktsii, mazhoranta smeshannykh modulei nepreryvnosti kotorykh soderzhit kak stepennye, tak i logarifmicheskie mnozhiteli”, Anal. Math., 34:3 (2008), 187–224 | DOI | MR | Zbl

[15] A. S. Romanyuk, “Nailuchshie priblizheniya i poperechniki klassov periodicheskikh funktsii mnogikh peremennykh”, Matem. sb., 199:2 (2008), 93–114 | DOI | MR | Zbl

[16] A. S. Romanyuk, “Poperechniki i nailuchshee priblizhenie klassov $B_{p,\theta}^r$ periodicheskikh funktsii mnogikh peremennykh”, Anal. Math., 37 (2011), 181–213 | DOI | MR | Zbl

[17] V. N. Temlyakov, “Priblizhenie funktsii s ogranichennoi smeshannoi proizvodnoi”, Tr. MIAN SSSR, 178, 1986, 3–113 | MR | Zbl

[18] V. N. Temlyakov, Approximation of Periodic Functions, Comput. Math. Anal. Ser., Nova Sci. Publ., Commack, NY, 1993 | MR | Zbl

[19] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR

[20] S. M. Nikolskii, “Neravenstva dlya tselykh funktsii konechnoi stepeni i ikh primenenie v teorii differentsiruemykh funktsii mnogikh peremennykh”, Tr. MIAN SSSR, 38, Izd-vo AN SSSR, M., 1951, 244–278 | MR | Zbl

[21] D. Jakson, “Certain problem of closest approximation”, Bull. Amer. Math. Soc., 39:12 (1933), 889–906 | DOI | MR

[22] N. N. Pustovoitov, “Priblizhenie mnogomernykh funktsii s zadannoi mazhorantoi smeshannykh modulei nepreryvnosti”, Matem. zametki, 65:1 (1999), 107–117 | DOI | MR | Zbl

[23] G. G. Khardi, Dzh. E. Littlvud, G. Polia, Neravenstva, IL, M., 1948 | MR