A Method for Finding the Fixed Vector of a Stochastic Operator
Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 708-717
Cet article a éte moissonné depuis la source Math-Net.Ru
The author proposes a new method for finding the fixed vector of a stochastic operator based on the representation of the operator of the linear system as the product of an noninvertible operator of simple form and an invertible operator. A complement to Jentsch's theorem is obtained.
Keywords:
linear algebraic system, fixed vector of a stochastic operator, Jentsch's theorem, integral stochastic operator.
@article{MZM_2014_95_5_a6,
author = {G. A. Grigoryan},
title = {A {Method} for {Finding} the {Fixed} {Vector} of a {Stochastic} {Operator}},
journal = {Matemati\v{c}eskie zametki},
pages = {708--717},
year = {2014},
volume = {95},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a6/}
}
G. A. Grigoryan. A Method for Finding the Fixed Vector of a Stochastic Operator. Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 708-717. http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a6/
[1] L. G. Khachiyan, “Slozhnost zadachi lineinogo programmirovaniya”, Novoe v zhizni, nauke, tekhnike. Ser. Matem., kibernet., 10, Znanie, M., 1987
[2] V. V. Voevodin, Oshibki okrugleniya i ustoichivost v pryamykh metodakh lineinoi algebry, Izd-vo Mosk. un-ta, M., 1969
[3] V. V. Voevodin, Vychislitelnye osnovy lineinoi algebry, Nauka, M., 1977 | MR
[4] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1978 | MR | Zbl