A Method for Finding the Fixed Vector of a Stochastic Operator
Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 708-717.

Voir la notice de l'article provenant de la source Math-Net.Ru

The author proposes a new method for finding the fixed vector of a stochastic operator based on the representation of the operator of the linear system as the product of an noninvertible operator of simple form and an invertible operator. A complement to Jentsch's theorem is obtained.
Keywords: linear algebraic system, fixed vector of a stochastic operator, Jentsch's theorem, integral stochastic operator.
@article{MZM_2014_95_5_a6,
     author = {G. A. Grigoryan},
     title = {A {Method} for {Finding} the {Fixed} {Vector} of a {Stochastic} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {708--717},
     publisher = {mathdoc},
     volume = {95},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a6/}
}
TY  - JOUR
AU  - G. A. Grigoryan
TI  - A Method for Finding the Fixed Vector of a Stochastic Operator
JO  - Matematičeskie zametki
PY  - 2014
SP  - 708
EP  - 717
VL  - 95
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a6/
LA  - ru
ID  - MZM_2014_95_5_a6
ER  - 
%0 Journal Article
%A G. A. Grigoryan
%T A Method for Finding the Fixed Vector of a Stochastic Operator
%J Matematičeskie zametki
%D 2014
%P 708-717
%V 95
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a6/
%G ru
%F MZM_2014_95_5_a6
G. A. Grigoryan. A Method for Finding the Fixed Vector of a Stochastic Operator. Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 708-717. http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a6/

[1] L. G. Khachiyan, “Slozhnost zadachi lineinogo programmirovaniya”, Novoe v zhizni, nauke, tekhnike. Ser. Matem., kibernet., 10, Znanie, M., 1987

[2] V. V. Voevodin, Oshibki okrugleniya i ustoichivost v pryamykh metodakh lineinoi algebry, Izd-vo Mosk. un-ta, M., 1969

[3] V. V. Voevodin, Vychislitelnye osnovy lineinoi algebry, Nauka, M., 1977 | MR

[4] V. S. Vladimirov, Uravneniya matematicheskoi fiziki, Nauka, M., 1978 | MR | Zbl