Isoperimetric Inequality for Curves with Curvature Bounded Below
Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 656-665
Cet article a éte moissonné depuis la source Math-Net.Ru
For embedded closed curves with curvature bounded below, we prove an isoperimetric inequality estimating the minimal area bounded by such curves for a fixed perimeter.
Keywords:
isoperimetric inequality, embedded closed curve, minimal area.
@article{MZM_2014_95_5_a2,
author = {A. A. Borisenko and K. D. Drach},
title = {Isoperimetric {Inequality} for {Curves} with {Curvature} {Bounded} {Below}},
journal = {Matemati\v{c}eskie zametki},
pages = {656--665},
year = {2014},
volume = {95},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a2/}
}
A. A. Borisenko; K. D. Drach. Isoperimetric Inequality for Curves with Curvature Bounded Below. Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 656-665. http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a2/
[1] A. V. Arutyunov, G. G. Magaril-Ilyaev, V. M. Tikhomirov, Printsip maksimuma Pontryagina. Dokazatelstvo i prilozheniya, Faktorial Press, M., 2006
[2] A. A. Milyutin, A. V. Dmitruk, N. P. Osmolovskii, Printsip maksimuma v optimalnom upravlenii, Izd-vo Tsentra prikl. issl. pri mekh.-mat. fak-te MGU, M., 2004
[3] V. Blyashke, Krug i shar, Nauka, M., 1967 | MR