Isoperimetric Inequality for Curves with Curvature Bounded Below
Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 656-665.

Voir la notice de l'article provenant de la source Math-Net.Ru

For embedded closed curves with curvature bounded below, we prove an isoperimetric inequality estimating the minimal area bounded by such curves for a fixed perimeter.
Keywords: isoperimetric inequality, embedded closed curve, minimal area.
@article{MZM_2014_95_5_a2,
     author = {A. A. Borisenko and K. D. Drach},
     title = {Isoperimetric {Inequality} for {Curves} with {Curvature} {Bounded} {Below}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {656--665},
     publisher = {mathdoc},
     volume = {95},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a2/}
}
TY  - JOUR
AU  - A. A. Borisenko
AU  - K. D. Drach
TI  - Isoperimetric Inequality for Curves with Curvature Bounded Below
JO  - Matematičeskie zametki
PY  - 2014
SP  - 656
EP  - 665
VL  - 95
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a2/
LA  - ru
ID  - MZM_2014_95_5_a2
ER  - 
%0 Journal Article
%A A. A. Borisenko
%A K. D. Drach
%T Isoperimetric Inequality for Curves with Curvature Bounded Below
%J Matematičeskie zametki
%D 2014
%P 656-665
%V 95
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a2/
%G ru
%F MZM_2014_95_5_a2
A. A. Borisenko; K. D. Drach. Isoperimetric Inequality for Curves with Curvature Bounded Below. Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 656-665. http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a2/

[1] A. V. Arutyunov, G. G. Magaril-Ilyaev, V. M. Tikhomirov, Printsip maksimuma Pontryagina. Dokazatelstvo i prilozheniya, Faktorial Press, M., 2006

[2] A. A. Milyutin, A. V. Dmitruk, N. P. Osmolovskii, Printsip maksimuma v optimalnom upravlenii, Izd-vo Tsentra prikl. issl. pri mekh.-mat. fak-te MGU, M., 2004

[3] V. Blyashke, Krug i shar, Nauka, M., 1967 | MR