Convergence-Preserving Maps and Fixed-Point Theorems
Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 790-794.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: sequential convergence, (pre)topological convergence, single-valued convergence, sequential topological space, convergence-preserving map, fixed-point theorem.
@article{MZM_2014_95_5_a12,
     author = {A. E. Gutman and A. V. Koptev},
     title = {Convergence-Preserving {Maps} and {Fixed-Point} {Theorems}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {790--794},
     publisher = {mathdoc},
     volume = {95},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a12/}
}
TY  - JOUR
AU  - A. E. Gutman
AU  - A. V. Koptev
TI  - Convergence-Preserving Maps and Fixed-Point Theorems
JO  - Matematičeskie zametki
PY  - 2014
SP  - 790
EP  - 794
VL  - 95
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a12/
LA  - ru
ID  - MZM_2014_95_5_a12
ER  - 
%0 Journal Article
%A A. E. Gutman
%A A. V. Koptev
%T Convergence-Preserving Maps and Fixed-Point Theorems
%J Matematičeskie zametki
%D 2014
%P 790-794
%V 95
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a12/
%G ru
%F MZM_2014_95_5_a12
A. E. Gutman; A. V. Koptev. Convergence-Preserving Maps and Fixed-Point Theorems. Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 790-794. http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a12/

[1] S. G. Matthews, Papers on General Topology and Applications, Ann. New York Acad. Sci., 728, New York Acad. Sci., New York, 1994, 183–197 | DOI | MR | Zbl

[2] A. Branciari, Publ. Math. Debrecen, 57:1-2 (2000), 31–37 | MR | Zbl

[3] L.-G. Huang, X. Zhang, J. Math. Anal. Appl., 332:2 (2007), 1468–1476 | DOI | MR | Zbl

[4] Z. Kadelburg, S. Radenović, V. Rakočević, Fixed Point Theory Appl., 2010, Article ID 170253 | MR

[5] V. Koutník, Convergence Structures 1984, Math. Res., 24, Akademie-Verlag, Berlin, 1985, 199–204 | MR | Zbl

[6] A. Beiranvand, S. Moradi, M. Omid, H. Pazandeh, Two Fixed-Point Theorems for Special Mappings, 2009, arXiv: math.FA/0903.1504v1

[7] J. R. Morales, E. Rojas, Notas Mat., 4:2 (2008), 66–78

[8] J. R. Morales Medina, E. M. Rojas, Notas Mat., 5:1 (2009), 64–71 | Zbl

[9] S. Moradi, A. Beiranvand, A Fixed-Point Theorem for Mapping Satisfying a General Contractive Condition of Integral Type Depended an Another Function, 2009, arXiv: math.FA/0903.1569v1

[10] S. Moradi, Fixed-Point Theorem For Mappings Satisfying a General Contractive Condition Of Integral Type Depended an Another Function, 2009, arXiv: math.FA/0903.1574v1

[11] S. Moradi, Kannan Fixed-Point Theorem On Complete Metric Spaces And On Generalized Metric Spaces Depended an Another Function, 2009, arXiv: math.FA/0903.1577v1

[12] J. R. Morales, E. Rojas, Fixed Point Theorems for a Class of Mappings Depending of Another Function and Defined on Cone Metric Spaces, 2009, arXiv: math.FA/0906.2160v1

[13] J. R. Morales, E. Rojas, $T$-Zamfirescu and $T$-Weak Contraction Mappings on Cone Metric Spaces, 2009, arXiv: math.FA/0909.1255v1

[14] J. R. Morales, E. Rojas, On the Existence of Fixed Points of Contraction Mappings Depending of Two Functions on Cone Metric Spaces, 2009, arXiv: math.FA/0910.4921v1

[15] J. R. Morales, E. Rojas, Int. J. Math. Anal. (Ruse), 4:4 (2010), 175–184 | MR | Zbl

[16] R. Sumitra, V. Rhymend Uthariaraj, R. Hemavathy, Int. Math. Forum, 5:30 (2010), 1495–1506 | MR | Zbl

[17] S. Moradi, M. Omid, Int. J. Math. Anal. (Ruse), 4:30 (2010), 1491–1499 | MR | Zbl

[18] S. Bhatt, A. Singh, R. C. Dimri, Int. J. Math. Archive, 2:4 (2011), 444–451

[19] S. Moradi, D. Alimohammadi, Int. J. Math. Anal. (Ruse), 5:47 (2011), 2313–2320 | MR | Zbl

[20] M. Sharma, R. Shrivastava, Z. K. Ansari, J. Contemp. Appl. Math., 1:1 (2011), 103–110 | MR

[21] M. Öztürk, M. Başarır, Int. J. Math. Anal., 5:3 (2011), 119–127 | MR | Zbl

[22] S. K. Malhotra, S. Shukla, R. Sen, Math. Aeterna, 1:6 (2011), 353–359 | MR

[23] M. Abbas, H. Aydi, S. Radenović, Int. J. Math. Math. Sci., 2012, Article ID 313675 | MR | Zbl

[24] V. Parvaneh, J. Basic Appl. Sci. Res., 2:3 (2012), 2354–2362

[25] V. Parvaneh, H. Hosseinzadeh, J. Appl. Sci., 12:9 (2012), 848–855 | DOI

[26] Tran Van An, Kieu Phuong Chi, Erdal Karapınar, Tran Duc Thanh, Int. J. Math. Math. Sci., 2012, Article ID 431872 | MR | Zbl

[27] Erdal Karapınar, Kieu Phuong Chi, Tran Duc Thanh, Abstr. Appl. Anal., 2012, Article ID 518734 | MR | Zbl

[28] Kieu Phuong Chi, Erdal Karapınar, Tran Duc Thanh, Arab J. Math. Sci., 18:2 (2012), 141–148 | DOI | MR | Zbl

[29] J. R. Morales, E. Rojas, Int. J. Math. Math. Sci., 2012, Article ID 213876 | MR | Zbl

[30] A. Razani, V. Parvanekh, Izv. vuzov. Matem., 2013, no. 3, 47–55

[31] A. K. Dubey, R. Shukla, R. P. Dubey, Int. J. Appl. Math. Res., 2:1 (2013), 84-90 | DOI