Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2014_95_5_a11, author = {V. S. Samovol}, title = {On {Solutions} of {Emden--Fawler-type} {Equations}}, journal = {Matemati\v{c}eskie zametki}, pages = {775--789}, publisher = {mathdoc}, volume = {95}, number = {5}, year = {2014}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a11/} }
V. S. Samovol. On Solutions of Emden--Fawler-type Equations. Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 775-789. http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a11/
[1] R. Bellman, Teoriya ustoichivosti reshenii differentsialnykh uravnenii, IL, M., 1954
[2] V. A. Kondratev, V. S. Samovol, “O nekotorykh asimptoticheskikh svoistvakh reshenii uravnenii tipa Emdena–Faulera”, Differents. uravneniya, 17:4 (1981), 749–750
[3] I. T. Kiguradze, T. F. Chanturiya, Asimptoticheskie svoistva reshenii neavtonomnykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1990
[4] I. T. Kiguradze, “O koleblemosti reshenii uravneniya $\frac{d^mu}{dt^m}+a(t)|u|^n\operatorname{sign}u=0$”, Matem. sb., 65:2 (1964), 172–187 | MR | Zbl
[5] I. V. Astashova, Kachestvennye svoistva reshenii differentsialnykh uravnenii i smezhnye voprosy spektralnogo analiza, YuNITI-DANA, M., 2012
[6] A. D. Bryuno, Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, Nauka, M., 1998 | MR
[7] A. D. Bryuno, “Asimptotiki i razlozheniya reshenii obyknovennogo differentsialnogo uravneniya”, UMN, 59:3 (2004), 31–80 | DOI | MR | Zbl