On Solutions of Emden--Fawler-type Equations
Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 775-789.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with solutions to Emden–Fawler-type equations of any arbitrary order. The asymptotic properties of solutions to these equations are studied, and a systematic survey of numerous uncoordinated results of analysis of continuable and noncontinuable solutions is given.
Keywords: Emden–Fawler-type equation, continuable solution, noncontinuable solution, oscillating solution.
@article{MZM_2014_95_5_a11,
     author = {V. S. Samovol},
     title = {On {Solutions} of {Emden--Fawler-type} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {775--789},
     publisher = {mathdoc},
     volume = {95},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a11/}
}
TY  - JOUR
AU  - V. S. Samovol
TI  - On Solutions of Emden--Fawler-type Equations
JO  - Matematičeskie zametki
PY  - 2014
SP  - 775
EP  - 789
VL  - 95
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a11/
LA  - ru
ID  - MZM_2014_95_5_a11
ER  - 
%0 Journal Article
%A V. S. Samovol
%T On Solutions of Emden--Fawler-type Equations
%J Matematičeskie zametki
%D 2014
%P 775-789
%V 95
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a11/
%G ru
%F MZM_2014_95_5_a11
V. S. Samovol. On Solutions of Emden--Fawler-type Equations. Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 775-789. http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a11/

[1] R. Bellman, Teoriya ustoichivosti reshenii differentsialnykh uravnenii, IL, M., 1954

[2] V. A. Kondratev, V. S. Samovol, “O nekotorykh asimptoticheskikh svoistvakh reshenii uravnenii tipa Emdena–Faulera”, Differents. uravneniya, 17:4 (1981), 749–750

[3] I. T. Kiguradze, T. F. Chanturiya, Asimptoticheskie svoistva reshenii neavtonomnykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1990

[4] I. T. Kiguradze, “O koleblemosti reshenii uravneniya $\frac{d^mu}{dt^m}+a(t)|u|^n\operatorname{sign}u=0$”, Matem. sb., 65:2 (1964), 172–187 | MR | Zbl

[5] I. V. Astashova, Kachestvennye svoistva reshenii differentsialnykh uravnenii i smezhnye voprosy spektralnogo analiza, YuNITI-DANA, M., 2012

[6] A. D. Bryuno, Stepennaya geometriya v algebraicheskikh i differentsialnykh uravneniyakh, Nauka, M., 1998 | MR

[7] A. D. Bryuno, “Asimptotiki i razlozheniya reshenii obyknovennogo differentsialnogo uravneniya”, UMN, 59:3 (2004), 31–80 | DOI | MR | Zbl