Short Sums with a Noninteger Power of a Natural Number
Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 763-774.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish a nontrivial estimate for a short trigonometric sum of the form $\sum_{x-y$, where $y\ge \sqrt{2cx}\,{\mathscr L}^A$, $A\ge 1$ is a fixed number, ${\mathscr L}=\ln x$, and $c$ is a noninteger satisfying the conditions $$ 1\le \log_2{\mathscr L}-\log_2 \ln {\mathscr L}^{6A},\qquad \|c\|\ge(2^{[c]+1}-1)(A+1){\mathscr L}^{-1}\ln{\mathscr L}. $$
Keywords: short trigonometric sum, estimate of a trigonometric sum, Fourier series, Stirling's formula.
@article{MZM_2014_95_5_a10,
     author = {P. Z. Rakhmonov},
     title = {Short {Sums} with a {Noninteger} {Power} of a {Natural} {Number}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {763--774},
     publisher = {mathdoc},
     volume = {95},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a10/}
}
TY  - JOUR
AU  - P. Z. Rakhmonov
TI  - Short Sums with a Noninteger Power of a Natural Number
JO  - Matematičeskie zametki
PY  - 2014
SP  - 763
EP  - 774
VL  - 95
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a10/
LA  - ru
ID  - MZM_2014_95_5_a10
ER  - 
%0 Journal Article
%A P. Z. Rakhmonov
%T Short Sums with a Noninteger Power of a Natural Number
%J Matematičeskie zametki
%D 2014
%P 763-774
%V 95
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a10/
%G ru
%F MZM_2014_95_5_a10
P. Z. Rakhmonov. Short Sums with a Noninteger Power of a Natural Number. Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 763-774. http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a10/

[1] J. M. Deshouillers, “Problème de Waring avec exposants non entiers”, Bull. Soc. Math. France, 101 (1973), 285–295 | MR | Zbl

[2] G. I. Arkhipov, A. N. Zhitkov, “O probleme Varinga s netselym pokazatelem”, Izv. AN SSSR. Ser. matem., 48:6 (1984), 1138–1150 | MR | Zbl

[3] K. Buriev, “Ob isklyuchitelnom mnozhestve v probleme Khardi–Litlvuda dlya netselykh stepenei”, Matem. zametki, 46:4 (1989), 127–128 | MR | Zbl

[4] I. M. Vinogradov, A. A. Karatsuba, “Metod trigonometricheskikh summ v teorii chisel”, Algebra, matematicheskaya logika, teoriya chisel, topologiya, Tr. MIAN SSSR, 168, 1984, 4–30 | MR | Zbl

[5] P. Z. Rakhmonov, “Korotkie trigonometricheskie summy s netseloi stepenyu naturalnogo chisla”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2012, no. 6, 51–55 | MR

[6] O. V. Popov, “Arifmeticheskie prilozheniya otsenok summ G. Veilya ot mnogochlenov rastuschei stepeni”, Fundament. i prikl. matem., 4:2 (1998), 595–640 | MR | Zbl

[7] G. I. Arkhipov, V. A. Sadovnichii, V. N. Chubarikov, Lektsii po matematicheskomu analizu, Drofa, M., 2003

[8] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR

[9] I. M. Vinogradov, Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1980 | MR

[10] G. I. Arkhipov, A. A. Karatsuba, V. N. Chubarikov, Teoriya kratnykh trigonometricheskikh summ, Nauka, M., 1987 | MR