Splitting Automorphisms of Order~$p^k$ of Free Burnside Groups are Inner
Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 651-655.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that, if the order of a splitting automorphism of odd period $n\ge 1003$ of a free Burnside group $B(m,n)$ is equal to a power of some prime, then the automorphism is inner. Thus, an affirmative answer is given to the question concerning the coincidence of the splitting automorphisms of the group $B(m,n)$ with the inner automorphisms for all automorphisms of order $p^k$ ($p$ is a prime). This question was posed in 1990 in “Kourovka Notebook” (see the 11th edition, Question 11.36.b).
Keywords: free Burnside group $B(m,n)$, splitting automorphism, inner automorphism.
@article{MZM_2014_95_5_a1,
     author = {V. S. Atabekyan},
     title = {Splitting {Automorphisms} of {Order~}$p^k$ of {Free} {Burnside} {Groups} are {Inner}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {651--655},
     publisher = {mathdoc},
     volume = {95},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a1/}
}
TY  - JOUR
AU  - V. S. Atabekyan
TI  - Splitting Automorphisms of Order~$p^k$ of Free Burnside Groups are Inner
JO  - Matematičeskie zametki
PY  - 2014
SP  - 651
EP  - 655
VL  - 95
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a1/
LA  - ru
ID  - MZM_2014_95_5_a1
ER  - 
%0 Journal Article
%A V. S. Atabekyan
%T Splitting Automorphisms of Order~$p^k$ of Free Burnside Groups are Inner
%J Matematičeskie zametki
%D 2014
%P 651-655
%V 95
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a1/
%G ru
%F MZM_2014_95_5_a1
V. S. Atabekyan. Splitting Automorphisms of Order~$p^k$ of Free Burnside Groups are Inner. Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 651-655. http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a1/

[1] O. H. Kegel, “Die Nilpotenz der $H_p$-Gruppen”, Math. Z., 75 (1961), 373–376 | DOI | MR | Zbl

[2] E. I. Khukhro, “Nilpotentnost razreshimykh grupp, dopuskayuschikh rasscheplyayuschii avtomorfizm prostogo poryadka”, Algebra i logika, 19:1 (1980), 118–129 | MR | Zbl

[3] E. Jabara, “Gruppi che ammettono un automorfismo 4-spezzante”, Rend. Circ. Mat. Palermo (2), 45:1 (1996), 84–92 | DOI | MR | Zbl

[4] V. S. Atabekyan, “Rasscheplyayuschie avtomorfizmy svobodnykh bernsaidovykh grupp”, Matem. sb., 204:2 (2013), 31–38 | DOI | MR | Zbl

[5] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, 11-e izd., eds. V. D. Mazurov, Yu. I. Merzlyakov, V. A. Chirkin, Izd-vo In-ta matem. SO AN SSSR, Novosibirsk, 1990

[6] S. I. Adyan, “Problema Bernsaida i svyazannye s nei voprosy”, UMN, 65:5(395) (2010), 5–60 | DOI | MR | Zbl

[7] V. S. Atabekyan, “Splitting automorphisms of free Burnside groups”, Proc. Yerevan State Univ. Phys. Math. Sci., 2011, no. 3, 62–64

[8] S. I. Adyan, I. G. Lysenok, “O gruppakh, vse sobstvennye podgruppy kotorykh konechnye tsiklicheskie”, Izv. AN SSSR. Ser. matem., 55:5 (1991), 933–990 | MR | Zbl

[9] A. Yu. Olshanskii, “Gruppy ogranichennogo perioda s podgruppami prostogo poryadka”, Algebra i logika, 21:5 (1982), 553–618 | MR

[10] V. S. Atabekyan, “O periodicheskikh gruppakh nechetnogo perioda $n\ge1003$”, Matem. zametki, 82:4 (2007), 495–500 | DOI | MR | Zbl

[11] V. S. Atabekyan, “Normalnye avtomorfizmy svobodnykh bernsaidovykh grupp”, Izv. RAN. Ser. matem., 75:2 (2011), 3–18 | DOI | MR | Zbl

[12] S. I. Adyan, Problema Bernsaida i tozhdestva v gruppakh, Nauka, M., 1975 | MR