On Finite Groups with Relatively Large Centralizers of Invariant Subgroups
Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 643-650.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, the finite groups $G$ are studied for which every invariant subgroup $A$ has the property that $|G:AC_G(A)|$ divides a fixed prime $p$.
Keywords: finite group, invariant subgroup, centralizer, nilpotent group.
Mots-clés : outer automorphism, solvable group
@article{MZM_2014_95_5_a0,
     author = {V. A. Antonov and T. G. Nozhkina},
     title = {On {Finite} {Groups} with {Relatively} {Large} {Centralizers} of {Invariant} {Subgroups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--650},
     publisher = {mathdoc},
     volume = {95},
     number = {5},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a0/}
}
TY  - JOUR
AU  - V. A. Antonov
AU  - T. G. Nozhkina
TI  - On Finite Groups with Relatively Large Centralizers of Invariant Subgroups
JO  - Matematičeskie zametki
PY  - 2014
SP  - 643
EP  - 650
VL  - 95
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a0/
LA  - ru
ID  - MZM_2014_95_5_a0
ER  - 
%0 Journal Article
%A V. A. Antonov
%A T. G. Nozhkina
%T On Finite Groups with Relatively Large Centralizers of Invariant Subgroups
%J Matematičeskie zametki
%D 2014
%P 643-650
%V 95
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a0/
%G ru
%F MZM_2014_95_5_a0
V. A. Antonov; T. G. Nozhkina. On Finite Groups with Relatively Large Centralizers of Invariant Subgroups. Matematičeskie zametki, Tome 95 (2014) no. 5, pp. 643-650. http://geodesic.mathdoc.fr/item/MZM_2014_95_5_a0/

[1] T. M. Gagen, “Nekotorye voprosy teorii konechnykh grupp”, K teorii konechnykh grup, Novoe v zarubezhnoi nauke. Matematika, 16, Mir, M., 1979, 13–97

[2] V. A. Antonov, S. G. Chekanov, “Konechnye $p$-gruppy s avtomorfizmom spetsialnogo vida”, Algebra i logika, 45:4 (2006), 379–389 | MR | Zbl

[3] M. I. Kargapolov, Yu. I. Merzlyakov, Osnovy teorii grupp, Nauka, M., 1996 | MR