On the Rate of Approximation of Singular Functions by Step Functions
Matematičeskie zametki, Tome 95 (2014) no. 4, pp. 590-604.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider approximations of a monotone function on a closed interval by step functions having a bounded number of values: the dependence on the number of values of the rate of approximation in the norm of the spaces $L_p$ is studied. A criterion for the singularity of the function in terms of the rate of approximation is obtained. For self-similar functions, we obtain sharp estimates of the rate of approximation in terms of the self-similarity parameters. Functions with arbitrarily fast and arbitrarily slow (down to the theoretic limit) rate of approximation are constructed.
Keywords: approximations of monotone functions by step functions, the space $L_p$, self-similar function, criterion for the singularity of functions, Hölder's inequality, Cantor function
Mots-clés : Lebesgue–Stieltjes measure, Lebesgue measure.
@article{MZM_2014_95_4_a9,
     author = {J. V. Tikhanov},
     title = {On the {Rate} of {Approximation} of {Singular} {Functions} by {Step} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {590--604},
     publisher = {mathdoc},
     volume = {95},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a9/}
}
TY  - JOUR
AU  - J. V. Tikhanov
TI  - On the Rate of Approximation of Singular Functions by Step Functions
JO  - Matematičeskie zametki
PY  - 2014
SP  - 590
EP  - 604
VL  - 95
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a9/
LA  - ru
ID  - MZM_2014_95_4_a9
ER  - 
%0 Journal Article
%A J. V. Tikhanov
%T On the Rate of Approximation of Singular Functions by Step Functions
%J Matematičeskie zametki
%D 2014
%P 590-604
%V 95
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a9/
%G ru
%F MZM_2014_95_4_a9
J. V. Tikhanov. On the Rate of Approximation of Singular Functions by Step Functions. Matematičeskie zametki, Tome 95 (2014) no. 4, pp. 590-604. http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a9/

[1] A. A. Vladimirov, I. A. Sheipak, “O zadache Neimana dlya uravneniya Shturma–Liuvillya s samopodobnym vesom kantorovskogo tipa”, Funkts. analiz i ego pril. (to appear)

[2] I. A. Sheipak, “O konstruktsii i nekotorykh svoistvakh samopodobnykh funktsii v prostranstvakh $L_p[0,1]$”, Matem. zametki, 81:6 (2007), 924–938 | DOI | MR | Zbl

[3] A. A. Vladimirov, I. A. Sheipak, “Samopodobnye funktsii v prostranstve $L_2[0,1]$ i zadacha Shturma–Liuvillya s singulyarnym indefinitnym vesom”, Matem. sb., 197:11 (2006), 13–30 | DOI | MR | Zbl

[4] A. Zigmund, Trigonometricheskie ryady, T. 1, Mir, M., 1965 | MR | Zbl