Pseudosymmetric Equations in a Free Monoid
Matematičeskie zametki, Tome 95 (2014) no. 4, pp. 577-589.

Voir la notice de l'article provenant de la source Math-Net.Ru

In 2011, Makanin obtained the general solution of the symmetric equation $$ x_1x_2\dotsb x_{n-1}x_n=x_nx_{n-1}\dotsb x_2x_1 $$ in a free monoid. In the present paper, a generalization of this result is given. Namely, we shall describe the general solution of the so-called pseudosymmetric equations in a free monoid which are obtained from the symmetric equations by transposing one (any) pair of adjacent variables.
Keywords: pseudosymmetric equation, free monoid, recursive function (recursion), lexicographic variable.
@article{MZM_2014_95_4_a8,
     author = {A. Sh. Malkhasyan},
     title = {Pseudosymmetric {Equations} in a {Free} {Monoid}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {577--589},
     publisher = {mathdoc},
     volume = {95},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a8/}
}
TY  - JOUR
AU  - A. Sh. Malkhasyan
TI  - Pseudosymmetric Equations in a Free Monoid
JO  - Matematičeskie zametki
PY  - 2014
SP  - 577
EP  - 589
VL  - 95
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a8/
LA  - ru
ID  - MZM_2014_95_4_a8
ER  - 
%0 Journal Article
%A A. Sh. Malkhasyan
%T Pseudosymmetric Equations in a Free Monoid
%J Matematičeskie zametki
%D 2014
%P 577-589
%V 95
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a8/
%G ru
%F MZM_2014_95_4_a8
A. Sh. Malkhasyan. Pseudosymmetric Equations in a Free Monoid. Matematičeskie zametki, Tome 95 (2014) no. 4, pp. 577-589. http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a8/

[1] G. S. Makanin, “Parametrizatsiya reshenii uravneniya $x_1x_2\dots x_{n-1}x_n=x_nx_{n-1}\dots x_2x_1$ v svobodnom monoide”, Matem. zametki, 89:6 (2011), 879–884 | DOI | MR

[2] Yu. I. Khmelevskii, “Uravneniya v svobodnoi polugruppe”, Tr. MIAN SSSR, 107, 1971, 3–288 | MR | Zbl