The Number of Attractors in Dymamical Systems Associated with Cycles
Matematičeskie zametki, Tome 95 (2014) no. 4, pp. 529-537.

Voir la notice de l'article provenant de la source Math-Net.Ru

The number of attractors in dynamical systems of binary vectors associated with cycles is calculated.
Keywords: dynamical system of binary vectors associated with a cycle, finite dynamical system, attractor, necklace.
@article{MZM_2014_95_4_a4,
     author = {A. V. Zharkova},
     title = {The {Number} of {Attractors} in {Dymamical} {Systems} {Associated} with {Cycles}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {529--537},
     publisher = {mathdoc},
     volume = {95},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a4/}
}
TY  - JOUR
AU  - A. V. Zharkova
TI  - The Number of Attractors in Dymamical Systems Associated with Cycles
JO  - Matematičeskie zametki
PY  - 2014
SP  - 529
EP  - 537
VL  - 95
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a4/
LA  - ru
ID  - MZM_2014_95_4_a4
ER  - 
%0 Journal Article
%A A. V. Zharkova
%T The Number of Attractors in Dymamical Systems Associated with Cycles
%J Matematičeskie zametki
%D 2014
%P 529-537
%V 95
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a4/
%G ru
%F MZM_2014_95_4_a4
A. V. Zharkova. The Number of Attractors in Dymamical Systems Associated with Cycles. Matematičeskie zametki, Tome 95 (2014) no. 4, pp. 529-537. http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a4/

[1] A. V. Vlasova, Issledovanie evolyutsionnykh parametrov v dinamicheskikh sistemakh dvoichnykh vektorov, Svidetelstvo o gosudarstvennoi registratsii programmy dlya EVM No 2009614409, vydannoe Rospatentom. Zaregistrirovano v Reestre programm dlya EVM 20 avgusta 2009 g.

[2] V. N. Salii, “Ob odnom klasse konechnykh dinamicheskikh sistem”, Vestn. Tomsk. gos. un-ta, 2005, Prilozhenie. Doklady IV Sibirskoi nauchnoi shkoly-seminara s mezhdunarodnym uchastiem “Problemy kompyuternoi bezopasnosti i kriptografiya” – SIBECRYPT'05 (Tomsk, TGU, 6–9 sentyabrya 2005 g.), no. 14, 23–26

[3] V. C. Barbosa, An Atlas of Edge-Reversal Dynamics, Chapman Hall/CRC Res. Notes Math., 421, Chapman Hall/CRC, Boca Raton, FL, 2001 | MR | Zbl

[4] O. Colón-Reyes, R. Laubenbacher, B. Pareigis, “Boolean monomial dynamical systems”, Ann. Comb., 8:4 (2004), 425–439 | DOI | MR | Zbl

[5] The Ultimate Challenge: The $3x+1$ Problem, ed. J. C. Lagarias, Amer. Math. Soc. Publ., Providence, RI, 2011 | MR

[6] D. R. Kaprekar, “An interesting property of the number 6174”, Scripta Math., 15 (1955), 244–245

[7] A. V. Vlasova, Attraktory v dinamicheskikh sistemakh dvoichnykh vektorov, Dep. v VINITI 23.06.2010 No 392-V2010, Saratov. gos. un-t, Saratov, 2010

[8] A. V. Vlasova, “Attraktory dinamicheskikh sistem, assotsiirovannykh s tsiklami”, PDM, 2011, no. 2, 90–95

[9] A. V. Vlasova, “Vetvleniya v konechnoi dinamicheskoi sisteme $(B^n,\theta)$”, Nauchnye issledovaniya studentov Saratovskogo gosudarstvennogo universiteta, Materialy itogovoi studencheskoi nauchnoi konferentsii, Izd-vo Saratov. gos. un-ta, Saratov, 2008, 57–58

[10] B.-S. Du, “A simple method which generates infinitely many congruence identities”, Fibonacci Quart., 27:2 (1989), 116–124 | MR | Zbl

[11] Sequence A006206, Onlain-entsiklopediya tselochislennykh posledovatelnostei (data obrascheniya 30.03.2011) http://oeis.org/A006206