On~$\mathrm K$-$\mathbb P$-Subnormal Subgroups of Finite Groups
Matematičeskie zametki, Tome 95 (2014) no. 4, pp. 517-528.

Voir la notice de l'article provenant de la source Math-Net.Ru

A subgroup $H$ of a group $G$ is said to be $\mathrm K$-$\mathbb P$-subnormal in $G$ if $H$ can be joined to the group by a chain of subgroups each of which is either normal in the next subgroup or of prime index in it. Properties of $\mathrm K$-$\mathbb P$-subnormal subgroups are obtained. A class of finite groups whose Sylow $p$-subgroups are $\mathrm K$-$\mathbb P$-subnormal in $G$ for every $p$ in a given set of primes is studied. Some products of $\mathrm K$-$\mathbb P$-subnormal subgroups are investigated.
Keywords: finite group, Sylow $p$-subgroup, $\mathrm K$-$\mathbb P$-subnormal subgroup, normal subgroup, subgroup of prime index, formation of groups.
Mots-clés : supersolvable group
@article{MZM_2014_95_4_a3,
     author = {A. F. Vasil'ev and T. I. Vasilyeva and V. N. Tyutyanov},
     title = {On~$\mathrm K$-$\mathbb P${-Subnormal} {Subgroups} of {Finite} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {517--528},
     publisher = {mathdoc},
     volume = {95},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a3/}
}
TY  - JOUR
AU  - A. F. Vasil'ev
AU  - T. I. Vasilyeva
AU  - V. N. Tyutyanov
TI  - On~$\mathrm K$-$\mathbb P$-Subnormal Subgroups of Finite Groups
JO  - Matematičeskie zametki
PY  - 2014
SP  - 517
EP  - 528
VL  - 95
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a3/
LA  - ru
ID  - MZM_2014_95_4_a3
ER  - 
%0 Journal Article
%A A. F. Vasil'ev
%A T. I. Vasilyeva
%A V. N. Tyutyanov
%T On~$\mathrm K$-$\mathbb P$-Subnormal Subgroups of Finite Groups
%J Matematičeskie zametki
%D 2014
%P 517-528
%V 95
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a3/
%G ru
%F MZM_2014_95_4_a3
A. F. Vasil'ev; T. I. Vasilyeva; V. N. Tyutyanov. On~$\mathrm K$-$\mathbb P$-Subnormal Subgroups of Finite Groups. Matematičeskie zametki, Tome 95 (2014) no. 4, pp. 517-528. http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a3/

[1] L. A. Shemetkov, Formatsii konechnykh grupp, Sovremennaya algebra, Nauka, M., 1978 | MR | Zbl

[2] A. Ballester-Bolinches, L. M. Ezquerro, Classes of Finite Groups, Math. Appl. (Springer), 584, Dordrecht, Springer, 2006 | MR | Zbl

[3] O. H. Kegel, “Untergruppenverbände endlicher Gruppen, die den Subnormalteilerverband echt enthalten”, Arch. Math. (Basel), 30:3 (1978), 225–228 | DOI | MR | Zbl

[4] A. F. Vasilev, T. I. Vasileva, V. N. Tyutyanov, “O konechnykh gruppakh sverkhrazreshimogo tipa”, Sib. matem. zhurn., 51:6 (2010), 1270–1281 | MR | Zbl

[5] A. F. Vasilev, T. I. Vasileva, V. N. Tyutyanov, “O proizvedeniyakh $\mathbb P$-subnormalnykh podgrupp v konechnykh gruppakh”, Sib. matem. zhurn., 53:1 (2012), 59–67 | MR | Zbl

[6] A. F. Vasilev, T. I. Vasileva, V. N. Tyutyanov, “O konechnykh gruppakh, blizkikh k sverkhrazreshimym gruppam”, PFMT, 2010, no. 2, 21–27

[7] V. N. Kniahina, V. S. Monakhov, Finite groups with $\mathbb P$-subnormal primary cyclic subgroups, 2011, arXiv: math.GR/1110.4720v2

[8] L. S. Kazarin, “O gruppakh s faktorizatsiei”, Dokl. AN SSSR, 256:1 (1981), 26–29 | MR | Zbl

[9] K. Doerk, T. Hawkes, Finite Soluble Groups, de Gruyter Exp. Math., 4, Walter de Gruyter, Berlin, 1992 | MR | Zbl

[10] A. F. Vasilev, “Novye svoistva konechnykh dinilpotentnykh grupp”, Izv. NAN Belarusi. Ser. fiz.-mat. nauk, 2004, no. 2, 29–33 | MR

[11] Between Nilpotent and Solvable, ed. M. Weinstein, Polygonal Publ. House, Washington, NJ, 1982 | MR | Zbl

[12] L. S. Kazarin, “O proizvedenii konechnykh grupp”, Dokl. AN SSSR, 269:3 (1983), 528–531 | MR | Zbl

[13] R. Baer, “Classes of finite groups and their properties”, Illinois J. Math., 1957, no. 1, 115–187 | MR | Zbl

[14] A. F. Vasilev, T. I. Vasileva, “O konechnykh gruppakh, u kotorykh glavnye faktory yavlyayutsya prostymi gruppami”, Izv. vuzov. Matem., 1997, no. 11, 10–14 | MR | Zbl