On the Exponential Rate of Convergence in the Birkhoff Ergodic Theorem
Matematičeskie zametki, Tome 95 (2014) no. 4, pp. 638-640.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: Birkhoff ergodic theorem, probability space, large deviation, transitive Anosov diffeomorphism, Riemann manifold, Hölder function.
Mots-clés : endomorphism
@article{MZM_2014_95_4_a14,
     author = {I. V. Podvigin},
     title = {On the {Exponential} {Rate} of {Convergence} in the {Birkhoff} {Ergodic} {Theorem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {638--640},
     publisher = {mathdoc},
     volume = {95},
     number = {4},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a14/}
}
TY  - JOUR
AU  - I. V. Podvigin
TI  - On the Exponential Rate of Convergence in the Birkhoff Ergodic Theorem
JO  - Matematičeskie zametki
PY  - 2014
SP  - 638
EP  - 640
VL  - 95
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a14/
LA  - ru
ID  - MZM_2014_95_4_a14
ER  - 
%0 Journal Article
%A I. V. Podvigin
%T On the Exponential Rate of Convergence in the Birkhoff Ergodic Theorem
%J Matematičeskie zametki
%D 2014
%P 638-640
%V 95
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a14/
%G ru
%F MZM_2014_95_4_a14
I. V. Podvigin. On the Exponential Rate of Convergence in the Birkhoff Ergodic Theorem. Matematičeskie zametki, Tome 95 (2014) no. 4, pp. 638-640. http://geodesic.mathdoc.fr/item/MZM_2014_95_4_a14/

[1] A. G. Kachurovskii, UMN, 51:4 (1996), 73–124 | DOI | MR | Zbl

[2] A. G. Kachurovskii, I. V. Podvigin, Matem. zametki, 94:4 (2013), 569–577 | DOI

[3] M. Pollicott, R. Sharp, Comm. Math. Phys., 290:1 (2009), 321–334 | MR | Zbl

[4] R. S. Ellis, Scand. Actuarial J., 1995:1 (1995), 97–142 | DOI | MR | Zbl